
valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Sampsa Riikonen

Sep 08, 2023

Contents

1 About Valkka 3
1.1 Why this library? . 3
1.2 Valkka API . 3
1.3 The Project . 4

2 Supported hardware 7
2.1 IP Cameras . 7
2.2 USB Cameras . 7
2.3 Codecs . 7
2.4 Linux clients . 8
2.5 Hardware Acceleration . 8

3 Installing 11
3.1 A. Install using PPA . 11
3.2 B. Install using releases . 11
3.3 C. Compile yourself . 12
3.4 Test your installation . 12
3.5 Numpy . 12
3.6 Install the testsuite . 12
3.7 GTK . 13
3.8 OpenCV . 13
3.9 Development version . 13

4 The PyQt testsuite 15
4.1 test_studio_1.py . 17
4.2 test_studio_detector.py . 19

5 Tutorial 21
5.1 Using the tutorial . 21
5.2 Prerequisites . 21
5.3 Lessons . 22

6 Decoding 63
6.1 Single thread . 63
6.2 Multithread . 63
6.3 GPU Accelerated . 64
6.4 Queueing frames . 64

i

7 Integrating with Qt and multiprocessing 67
7.1 Qt integration . 67
7.2 Drawing video into a widget . 67
7.3 Python multiprocessing . 68
7.4 C++ API . 70

8 Multi-GPU systems 71
8.1 Introduction . 71
8.2 Our approach . 72
8.3 Configuration . 72
8.4 Note on $DISPLAY . 73

9 ValkkaFS 75
9.1 VMS Architecture . 75
9.2 Filesystem . 76
9.3 Multiple Streams per File . 77
9.4 Using an entire partition . 77

10 Cloud Streaming 79

11 OnVif & Discovery 81
11.1 Intro . 81
11.2 Python OnVif . 81
11.3 OnVif with Zeep . 82
11.4 Service classes . 83
11.5 Example call . 83
11.6 Notes . 84
11.7 Discovery . 84

12 Common problems 85
12.1 Pitfalls . 85
12.2 Bottlenecks . 86
12.3 System tuning . 87
12.4 FAQ . 87

13 Debugging 89

14 Repository Index 91

15 Licence & Copyright 95

16 Authors 97

17 Knowledge Base 99
17.1 General . 99
17.2 OpenCV & OpenCV contrib . 99
17.3 Jetson Nano . 101

ii

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Valkka is a python media streaming framework

Create video streaming and surveillance solutions purely in Python. No need to go C++ ever again.

Some highlights of Valkka

• Python3 API, while streaming itself runs in the background at the cpp level. Threads, semaphores, frame queues
etc. are hidden from the API user.

• Works with stock OnVif compliant IP cameras

• Create complex filtergraphs for your streams - send stream to screen, to disk or to your module of choice via
shared memory

• Share decoded video with python processes across your Linux system

• Plug in your python-based machine vision modules : libValkka is framework agnostic, so everything goes -
pytorch, tensorflow, you name it!

• Designed for massive video streaming : view and analyze simultaneously a large number of IP cameras

• Recast the IP camera video streams to either multicast or unicast

• Build graphical user interfaces with PyQt, interact machine vision with Qt’s signal/slot system and build highly
customized GUIs

If you are not a developer and wonder why all this is supposed to be cool and the economic benefits of it (an investor
perhaps), please take a look at the Valkka VMS whitepaper

Devs already involved knee-deep in the video streaming / machine vision business, might want to take a look at this
presentation to see some of the typical video streaming / machine vision problems libValkka can solve for you.

This documentation is a quickstart for installing and developing with Valkka using the Python3 API.

This is the recommended learning process:

• Start with the tutorial

• Valkka streams video and images between python multiprocesses, so reading this article is a must

• If you’re into creating PyQt/PySide2 applications, take a look at the PyQt testsuite

• If you’re more into cloud apps, check out valkka-streamer

For a desktop demo program using Valkka, check out Valkka Live

Contents 1

https://drive.google.com/file/d/1bKCEqo3-30fiYNIbxkbD_OsgUcW1ycH_/view?usp=sharing
https://drive.google.com/file/d/19VXmhTYi19EKDlSorv-Tmd0gholeD9SJ
https://drive.google.com/file/d/19VXmhTYi19EKDlSorv-Tmd0gholeD9SJ
https://medium.com/@sampsa.riikonen/doing-python-multiprocessing-the-right-way-a54c1880e300
https://github.com/elsampsa/valkka-streamer
https://elsampsa.github.io/valkka-live/

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

2 Contents

CHAPTER 1

About Valkka

1.1 Why this library?

So, yet another media player? I need to stream video from my IP camera into my python/Qt program and I want
something that can be developed fast and is easy to integrate into my code. What’s here for me?

If you just need to stream video from your IP cameras, decode it and show it on the screen, we recommend a standard
media player, say, VLC and its python bindings.

However, if you need to stream video and simultaneously (1) present it on the screen, (2) analyze it with machine
vision, (3) write it to disk, and even (4) recast it to other clients, stock media players won’t do.

Such requirements are typical in large-scale video surveillance, management and analysis solutions. Demand for them
is growing rapidly due to continuous decline in IP camera prices and growing computing power.

As a solution, you might try connect to the same camera 4 times and decode the stream 4 times - but then you’ll burn
all that CPU for nothing (you should decode only once). And try to scale that only to, say, 20+ cameras. In order avoid
too many connections to your IP cameras (this is typically limited by the camera), you might desperately try your luck
even with the multicast loopback. We’ve been there and it’s not a good idea. And how about pluggin in your favorite
machine vision/learning module, written with OpenCV or TensorFlow?

1.2 Valkka API

Valkka will solve the problem for you; It is a programming library and an API to do just that - large scale video
surveillance, management and analysis programs, from the comfort of python3.

With Valkka, you can create complex pipings (“filtergraphs”) of media streams from the camera, to screen, machine
vision subroutines, to disk, to the net, etc. The code runs at the cpp level with threads, thread-safe queues, mutexes,
semaphores, etc. All those gory details are hidden from the API user that programs filtergraphs at the python level
only. Valkka can also share frames between python processes (and from there, with OpenCV, TensorFlow, etc.)

If you got interested, we recommend that you do the tutorial, and use it together with the PyQt testsuite, and the
example project as starting points for your own project.

3

https://github.com/elsampsa/valkka-examples/tree/master/example_projects/basic
https://github.com/elsampsa/valkka-examples/tree/master/example_projects/basic

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

This manual has a special emphasis for Qt and OpenCV. You can create video streaming applications using PyQt:
streaming video to widgets, and connect the signals from your machine vision subprograms to the Qt signal/slot
system - and beyond.

For more technical information, check out the library architecture page

Finally, here is a small sample from the tutorial. You’ll get the idea.

main branch, streaming
(LiveThread:livethread) --> ----------------------------------+

|
|

{ForkFrameFilter: fork_filter} <----(AVThread:avthread) << ---+ main branch, decoding
|

branch 1 +-->> (OpenGLThread:glthread) --> To X-Window System
|

branch 2 +---> {IntervalFrameFilter: interval_filter} --> {SwScaleFrameFilter:
→˓sws_filter} --> {RGBSharedMemFrameFilter: shmem_filter}

→˓ |

→˓ To OpenCV <--------+

1.3 The Project

In Valkka, the “streaming pipeline” from IP cameras to decoders and to the GPU has been completely re-thinked and
written from scratch:

• No dependencies on external libraries or x window extensions (we use only glx)

• Everything is pre-reserved in the system memory and in the GPU. During streaming, frames are pulled from
pre-reserved stacks

• OpenGL pixel buffer objects are used for texture video streaming (in the future, we will implement fish-eye
projections)

• Customized queueing and presentation algorithms

• etc., etc.

Valkka is in alpha stage. Even so, you can do lot of stuff with it - at least all the things we have promised here in the
intro.

Repositories are organized as follows:

valkka-core : the cpp codebase and its python bindings are available at the valkka-core github repository. The cpp
core library is licensed under LGPL license see here.

valkka-examples : the python tutorial and PyQt example/testsuite are available at the valkka-examples github reposi-
tory. MIT licensed.

For more, see here.

All functional features are demonstrated in the tutorial which is updated as new features appear. Same goes for the
PyQt testsuite.

Near-term goals for new features are:

• Interserver communications between Valkka-based server and clients

• ValkkaFS filesystem, designed for recording large amounts of video (not yet fully operational / debugged)

4 Chapter 1. About Valkka

https://elsampsa.github.io/valkka-core/html/process_chart.html
https://github.com/elsampsa/valkka-core
https://github.com/elsampsa/valkka-examples
https://github.com/elsampsa/valkka-examples

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

• Synchronized recording of video

• Fisheye projections

• Support for sound

Valkka is based on the following opensource libraries and technologies:

1.3. The Project 5

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

6 Chapter 1. About Valkka

CHAPTER 2

Supported hardware

2.1 IP Cameras

OnVif compliant IP cameras (supporting the RTSP protocol)

Initial configuration of IP cameras can be a hurdle:

Many IP cameras typically require a half-broken Active-X (!) web-extension you have to download (to use with some
outdated version of internet explorer).

Once you have sorted out those manufacturer-dependent issues you are good to go with OnVif and the RTSP protocol
(as supported by libValkka).

Axis cameras, on the other hand, have a decent (standard javascript) web-interface for camera initial configuration.

Once you have done succesfull initial configuration, you can test the rtsp connection, with, say, using ffmpeg:

ffmpeg rtsp://user:password@ip-address

2.2 USB Cameras

USB Cameras capable of streaming H264

We have tested against Logitech HD Pro Webcam C920

2.3 Codecs

For the moment, the only supported codec is H264

7

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

2.4 Linux clients

libValkka uses OpenGL and OpenGL texture streaming, so it needs a robust OpenGL implementation. The current
situation is:

• Intel: the stock i915 driver is OK

• Nvidia: use nvidia proprietary driver

• ATI: not tested

OpenGL version 3 or greater is required. You can check your OpenGL version with the command glxinfo.

2.5 Hardware Acceleration

Please first read this word of warning.

VAAPI

Comes in the basic libValkka installation (and uses ffmpeg/libav infrastructure) - no additional packages needed.

First of all, the user using VAAPI, must belong to the “video” user group:

groups $USER
run the following command if the user does not appear in the video group
sudo usermod -a -G video $USER
after that you still need to logout & login

In order to use the VAAPI acceleration, just replace AVThread with VAAPIThread, i.e. instead of

avthread = AVThread("avthread", target_filter)

use this:

avthread = VAAPIThread("avthread", target_filter)

For more details about VAAPI, you can read this, this and this.

WARNING: VAAPI, especially the intel implementation, comes with a memory leak, which seems to be feature, not a
bug - see discussions in here and here. I have confirmed this memory leak myself with libva 2.6.0.

The opensource Mesa implementation (“i965”) is (surprise!) more stable and libValkka enforces i965 internally by
setting the environment variable LIBVA_DRIVER_NAME to i965 (this happens when you do from valkka.core import
*).

If you really want to use other libva implementation, you can set

export VALKKA_LIBVA_DRIVER_NAME=your-driver-name

If you wish to use VAAPI in a docker environment, you should start docker with

--device=/dev/dri:/dev/dri

And be sure that the host machine has all required vaapi-related libraries installed (the easiest way: install libValkka
on the host as well).

Finally, you can follow the GPU usage in realtime with:

8 Chapter 2. Supported hardware

https://wiki.archlinux.org/title/Hardware_video_acceleration
https://wiki.debian.org/HardwareVideoAcceleration
https://en.wikipedia.org/wiki/Video_Acceleration_API#Supported_hardware_and_drivers
https://ffmpeg.org/pipermail/ffmpeg-user/2017-May/036232.html
https://github.com/mpv-player/mpv/issues/4383

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

sudo intel_gpu_top

NVidia / CUDA

Provided as a separate package that installs into the valkka.nv namespace and is used like this:

from valkka.nv import NVThread
avthread = NVThread("avthread", target_filter, gpu_index)

Available here

Huawei / CANN

Provided as a separate package. Very experimental and not guaranteed to work.

Available here

2.5. Hardware Acceleration 9

https://github.com/xiaxoxin2/valkka-nv
https://gitee.com/ElSampsa/valkka_cann

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

10 Chapter 2. Supported hardware

CHAPTER 3

Installing

The debian package includes the core library, its python bindings and some API level 2 python code. The python part
is installed “globally” into /usr/lib/python3/dist-packages/

Note: LibValkka comes precompiled and packaged for a certain ubuntu distribution version. This means that the
compilation and it’s dependencies assume the default python version of that distribution. Using custom-installed
python versions, anacondas and whatnot might cause dependency problems.

3.1 A. Install using PPA

the preferred way

For recent ubuntu distributions, the core library binary packages and python bindings are provided by a PPA repository.
Subscribe to the PPA repo (do this only once) with:

sudo apt-add-repository ppa:sampsa-riikonen/valkka

Install with:

sudo apt-get update
sudo apt-get install valkka

When you need to update valkka, do:

sudo apt-get update
sudo apt-get install --only-upgrade valkka

3.2 B. Install using releases

if you don’t like PPAs

11

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

You can download and install the required .deb packages “manually” from the releases page

sudo dpkg -i Valkka-*.deb
sudo apt-get install -fy

The last line pulls the dependencies.

Repeat the process when you need to update.

3.3 C. Compile yourself

the last resort

If you’re not using a recent Ubuntu distro and need to build libValkka and it’s python bindings yourself, please refer
to the valkka-core github page.

3.4 Test your installation

Test the installation with:

curl https://raw.githubusercontent.com/elsampsa/valkka-examples/master/quicktest.py -
→˓o quicktest.py
python3 quicktest.py

3.5 Numpy

Valkka-core binaries has been compiled with the numpy version that comes with the corresponding Ubuntu distro, i.e.
the numpy you would install with sudo apt-get install python3-numpy.

That version is automatically installed when you install valkka core with sudo apt-get, but it might be “shadowed”
by your locally installed numpy.

If you get errors about numpy import, try removing your locally installed numpy (i.e. the version you installed with
pip install --user).

3.6 Install the testsuite

First, install some debian packages:

sudo apt-get install python3-pip git mesa-utils ffmpeg vlc

some of these will be used for benchmarking Valkka agains other programs.

The testsuite and tutorials use also imutils and PyQt5, so install a fresh version of them locally with pip:

pip3 install --user imutils PyQt5 PySide2 setproctitle

Here we have installed two flavors of the Qt python bindings, namely, PyQt5 and PySide2. They can be used in an
identical manner. If you use PyQt5, be aware of its licensing terms.

Finally, for tutorial code and the PyQt test suite, download valkka-examples with:

12 Chapter 3. Installing

https://github.com/elsampsa/valkka-core/releases
https://github.com/elsampsa/valkka-core#compile-yourself
https://www.riverbankcomputing.com
https://doc.qt.io/qtforpython/contents.html

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

git clone https://github.com/elsampsa/valkka-examples

Test the installation with:

cd valkka-examples
python3 quicktest.py

and you’re all set.

When updating the python examples (do this always after updating valkka-core), do the following:

git pull
python3 quicktest.py

This checks that valkka-core and valkka-examples have consistent versions.

In the case of a numerical python version mismatch error, you are not using the default numpy provided by your
Ubuntu distribution (from the debian package python3-numpy). Remove the conflicting numpy installation with pip3
uninstall or setting up a virtualenv.

Next, try out the PyQt test/demo suite or learn to program with the tutorial.

3.7 GTK

If you wan’t to use GTK as your graphical user interface, you must install the PyGObject python bindings, as instructed
here, namely:

sudo apt-get install python-gi python-gi-cairo python3-gi python3-gi-cairo gir1.2-gtk-
→˓3.0

3.8 OpenCV

Install with:

pip3 uninstall opencv-python
sudo pip3 uninstall opencv-python # just in case!
sudo apt-get install python3-opencv

The first one deinstall anything you may have installed with pip, while the second one installs the (good) opencv that
comes with your linux distro’s default python opencv installation.

3.9 Development version

As described above, for the current stable version of valkka-core, just use the repository.

For the development version (with experimental and unstable features) you have to compile from source. You might
need to do this also for architectures other than x86.

Follow instructions in here.

3.7. GTK 13

https://www.gtk.org/
https://pygobject.readthedocs.io/en/latest/getting_started.html
https://github.com/elsampsa/valkka-core#compile-yourself

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

14 Chapter 3. Installing

CHAPTER 4

The PyQt testsuite

So, you have installed valkka-core and valkka-examples as instructed here. The same hardware requirements apply
here as in the tutorial.

The PyQt testsuite is available at

valkka_examples/api_level_2/qt/

The testsuite is intended for:

• Demonstration

• Benchmarking

• Ultimate debugging

• As materia prima for developers - take a copy of your own and use it as a basis for your own Valkka / Qt program

If you want a more serious demonstration, try out Valkka Live instead.

Currently the testsuite consists of the following programs:

15

https://elsampsa.github.io/valkka-live/

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

File Explanation
test_studio_1.py

- Stream from several rtsp cameras or sdp sources
- Widgets are grouped together
- This is just live streaming, so use:

rtsp://username:password@your_ip

- If you define a filename, it is interpreted as an sdp file

test_studio_2.py

- Like test_studio_1.py
- Floating widgets

test_studio_3.py

- Like test_studio_2.py
- On a multi-gpu system, video can be sent to another
gpu/x-screen pair

test_studio_4.py

- Like test_studio_3.py
- A simple user menu where video widgets can be
opened
- Open the File menu to add video on the screen

test_studio_detector.py

- Like test_studio_1.py
- Shares video to OpenCV processes
- OpenCV processes connect to Qt signal/slot system

test_studio_file.py

- Read and play stream from a matroska file
- Only matroska-contained h264 is accepted.
- Convert your video to “ip-camera-like” stream with:

ffmpeg -i your_video_file -c:v h264 -r 10 -preset
ultrafast
-profile:v baseline
-bsf h264_mp4toannexb -x264-params
keyint=10:min-keyint=10
-an outfile.mkv

- If you’re recording directly from an IP camera, use:

ffmpeg -i rtsp://username:password@your_ip
-c:v copy -an outfile.mkv

test_studio_multicast.py

- Like test_studio_1.py
- Recast multiple IP cameras into multicast

test_studio_rtsp.py

- Like test_studio_1.py
- Recast IP cameras to unicast.
- Streams are accessible from local server:

rtsp://127.0.0.1:8554/streamN

(where N is the number of the camera)

test_studio_5.py

Very experimental
- Prefer test_studio_6.py over this one
- Continuous recording to ValkkaFS
- Dumps all streams to a single file (uses
ValkkaMultiFS)
- Simultaneous, interactive playback : use mouse clicks
& wheel to navigate the timeline
- remove directory fs_directory/ if the program
refuses to start

test_studio_6.py

Experimental
- Continuous recording to ValkkaFS
- One file per stream (uses ValkkaSingleFS)
- Simultaneous, interactive playback : use mouse clicks
& wheel to navigate the timeline
- remove directory fs_directory_*/ if the
program refuses to start

16 Chapter 4. The PyQt testsuite

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Before launching any of the testsuite programs you should be aware of the common problems of linux video streaming.

4.1 test_studio_1.py

Do this:

cd valkka_examples/api_level_2/qt/
python3 test_studio_1.py

The program launches with the following menu:

The field on the left is used to specify stream sources, one source per line. For IP cameras, use “rtsp://”, for sdp files,
just give the filename. In the above example, we are connecting to two rtsp IP cams.

The fields on the right are:

4.1. test_studio_1.py 17

rtsp://

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Field name What it does
n720p Number of pre-reserved frames for 720p resolution
n1080p Number of pre-reserved frames for 1080p resolution
n1440p etc.
n4K etc.
naudio (not used)
verbose (not used)
msbuftime Frame buffering time in milliseconds
live affinity Bind the streaming thread to a core. Default = -1 (no

binding)
gl affinity Bind frame presentation thread to a core. Default = -1
dec affinity start Bind decoding threads to a core (first core). Default =

-1
dec affinity stop Bind decoding threads to cores (last core). Default = -1
replicate Dump each stream to screen this many times
correct timestamp

1 = smart-correct timestamp (use this!)
0 = restamp upon arrival

socket size bytes don’t touch. Default value = 0.
ordering time millisecs don’t touch. Default value = 0.

As you learned from the tutorial, in Valkka, frames are pre-reserved on the GPU. If you’re planning to use 720p and
1080p cameras, reserve, say 200 frames for both.

Decoded frames are being queued for “msbuftime” milliseconds. This is necessary for de-jitter (among other things).
The bigger the buffering time, the more pre-reserved frames you’ll need and the more lag you get into your live
streaming. A nice value is 300. For more on the subject, read this.

Replicate demonstrates how Valkka can dump the stream (that’s decoded only once) to multiple X windows. Try for
example the value 24 - you get each stream on the screen 24 times, without any performance degradation or the need
to decode streams more than once.

In Valkka, all threads can be bound to a certain processor core. Default value “-1” indicates that the thread is unbound
and that the kernel can switch it from one core to another (normal behaviour).

Let’s consider an example:

Field name value
live affinity 0
gl affinity 1
dec affinity start 2
dec affinity stop 4

Now LiveThread (the thread that streams from cameras) stays at core index 0, all OpenGL operations and frame
presenting at core index 1. Let’s imagine you have ten decoders running, then they will placed like this:

Core Decoder thread
core 2 1, 4, 7, 10
core 3 2, 5, 8
core 4 3, 6, 9

18 Chapter 4. The PyQt testsuite

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Setting processor affinities might help, if you can afford the luxury of having one processor per decoder. Otherwise, it
might mess up the load-balancing performed by the kernel.

By default, don’t touch the affinities (simply use the default value -1).

Finally, the buttons that launch the test, do the following:

Button What it does?
SAVE Saves the test configuration (yes, save it)
RUN(QT) Runs THE TEST (after saving, press this!)
RUN Runs the test without Qt
FFPLAY Runs the streams in ffplay instead (if installed)
VLC Runs the streams in vlc instead (if installed)

RUN(QT) is the thing you want to do.

FFPLAY and VLC launch the same rtsp streams by using either ffplay or vlc. This is a nice test to see how Valkka
performs against some popular video players.

4.2 test_studio_detector.py

The detector test program uses OpenCV, so you need to have it installed

Launch the program like this:

cd valkka_examples/api_level_2/qt/
python3 test_studio_detector.py

This is similar to test_studio_1.py. In addition to presenting the streams on-screen, the decoded frames are passed,
once in a second, to OpenCV movement detectors. When movement is detected, a signal is sent with the Qt signal/slot
system to the screen.

This test program is also used in the gold standard test. Everything is here: streaming, decoding, OpenGL streaming,
interface to python and even the posix shared memory and semaphores. One should be able to run this test with a large
number of cameras for a long period of time without excessive memory consumption or system instabilities.

4.2. test_studio_detector.py 19

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

20 Chapter 4. The PyQt testsuite

CHAPTER 5

Tutorial

5.1 Using the tutorial

Once you have installed valkka-examples with git as instructed in here, the example codes of this tutorial can be run
like this:

cd valkka_examples/api_level_1/tutorial
python3 lesson_1_a.py

5.2 Prerequisites

Before starting with the tutorial, you need at least:

• A decent desktop/laptop linux box with Ubuntu 16 installed

• At least 4 GB of total memory (as modern linux distros take around 2 GB out of that)

• Valkka and its python bindings installed (instructions here)

• OpenCV installed (instructions here)

• An RTSP camera connected to your router

– Valkka uses standard protocols (RTSP, RTP, etc.), so it works with most of the cameras on the market

– If your camera is “OnVif compliant”, then it support RTSP and RTP

• For the USB camera example, a H264 streaming USB camera is required

• Basic knowledge of media streaming in linux:

– How to connect to an rtsp camera (e.g. “ffplay rtsp://username:passwd@ip_address”)

– What are RTSP, SDP, etc., what is H264 and how video is streamed, etc.

• A media player installed, say, vlc and/or ffplay

21

rtsp://username:passwd@ip_address

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

5.3 Lessons

5.3.1 Lesson 1 : Receiving frames from an IP camera

A single FrameFilter

Download lesson [here]

Import the valkka level 1 API:

import time
from valkka.core import *

Create a starting point for a FrameFilter chain:

live_out_filter =InfoFrameFilter("live_out_filter")

This is the “entry point” where we receive all the frames.

InfoFrameFilter does nothing fancy - it just prints out the frames it receives.

However, as you will learn during this tutorial, FrameFilters can do a lot of stuff. You can chain them together. They
can be used to fork and copy the stream into complex graphs, etc.

Next we need a thread that feeds the frames into our FrameFilter, so we instantiate a LiveThread:

livethread =LiveThread("livethread")

We also need a context describing the connection to an IP camera:

ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:nordic12345@192.168.
→˓1.41", 1, live_out_filter)

The first parameter defines the device type, which in this case is an IP camera using the rtsp protocol. Note that we
include the “entry point” live_out_filter. The integer parameter “1” is the slot number - it will be discussed in detail
later on in this tutorial.

Finally, we can start streaming frames from the IP camera:

livethread.startCall()
livethread.registerStreamCall(ctx)
livethread.playStreamCall(ctx)
time.sleep(5)
livethread.stopCall()
print("bye")

The output looks like this:

InfoFrameFilter: live_out_filter start dump>>
InfoFrameFilter: FRAME : <SetupFrame: timestamp=1525870891068 subsession_index=0
→˓slot=1 / media_type=0 codec_id=27>
InfoFrameFilter: PAYLOAD : []
InfoFrameFilter: timediff: 0
InfoFrameFilter: live_out_filter <<end dump
InfoFrameFilter: live_out_filter start dump>>
InfoFrameFilter: FRAME : <BasicFrame: timestamp=1525870891068 subsession_index=0
→˓slot=1 / payload size=45 / H264: slice_type=7>
InfoFrameFilter: PAYLOAD : [0 0 0 1 103 100 0 42 173 132 1 12 32 8 97 0 67 8 2 24]

(continues on next page)

22 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

InfoFrameFilter: timediff: 0
InfoFrameFilter: live_out_filter <<end dump
InfoFrameFilter: live_out_filter start dump>>
InfoFrameFilter: FRAME : <BasicFrame: timestamp=1525870891068 subsession_index=0
→˓slot=1 / payload size=9 / H264: slice_type=8>
InfoFrameFilter: PAYLOAD : [0 0 0 1 104 238 49 178 27]
InfoFrameFilter: timediff: -1
InfoFrameFilter: live_out_filter <<end dump
...
...

InfoFrameFilter simply prints the frame type and first few bytes of it’s payload (if there is any).

The first frame we get is a setup frame. This is a key feature of Valkka: the stream of frames that flows from source
to the final sink, consists, not only of payload (say, H264 or PCMU), but of frames that are used to inform the system
about the stream type, codec, etc.

Note: The code itself (LiveThread, InfoFrameFilter) runs in c++, while the connections are programmed here, at the
python level

Chaining FrameFilters

Download lesson [here]

In the previous example, we had a thread (LiveThread), feeding a single FrameFilter (InfoFrameFilter). The “filter-
graph” for this case looks like this:

(LiveThread:livethread) --> {InfoFrameFilter:live_out_filter}

In this notation, threads are marked with normal parenthesis (), and FrameFilters with curly brackets {}. Both class
and instance names are included.

Next, let’s chain some FrameFilters like this:

(LiveThread:livethread) --> {InfoFrameFilter:live_out_filter} ->
→˓{InfoFrameFilter:filter_2} -> {InfoFrameFilter:filter_3}

That chain can be created in python like this:

filter_3 =InfoFrameFilter("filter_3")
filter_2 =InfoFrameFilter("filter_2",filter_3)
live_out_filter =InfoFrameFilter("live_out_filter",filter_2)

Note that creating the filtergraph programmatically is started from the last framefilter (“filter_3”): we need to create
“filter_3” first and pass it as a parameter (output target) to “filter_2”, etc. If you get confused with this, when dealing
with more complex filtergraphs, just follow this rule of thumb: when instantiating framefilters, follow the filtergraph
from end-to-beginning.

The output when running the python code looks like this:

InfoFrameFilter: live_out_filter start dump>>
...
InfoFrameFilter: live_out_filter <<end dump
InfoFrameFilter: filter_2 start dump>>

(continues on next page)

5.3. Lessons 23

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

...
InfoFrameFilter: filter_2 <<end dump
InfoFrameFilter: filter_3 start dump>>
...
InfoFrameFilter: filter_3 <<end dump

So, live_out_filter gets frame from livethread. It prints out info about the frame. Then it passes it to filter_2 that again
prints information about the frame. filter_2 passes the frame onto filter_3, etc.

Note: LiveThread has an internal FrameFilter chain that is used to correct the timestamps given by your IP camera

Forking FrameFilters

Download lesson [here]

As a final trivial example for this lesson, we fork the FrameFilter chain into two:

filtergraph:
branch 1
+------------>

→˓{GateFrameFilter: gate_filter}
main branch | |
(LiveThread:livethread) --> {ForkFrameFilter:live_out_filter} --> |
→˓+--- {InfoFrameFilter: info_filter}

|
+------------->

→˓{FileFrameFilter: file_filter}
branch 2

Frames are fed to a ForkFrameFilter that copies the stream into two branches.

At branch 1, there is an on/off gate. When the gate is on, the frames are passed further on to the verbose InfoFrame-
Filter.

At branch 2, frames are written to a file

The filtergraph can be implemented in python like this:

branch 1
info_filter =InfoFrameFilter("info_filter")
gate_filter =GateFrameFilter("gate_filter",info_filter)

branch 2
file_filter =FileFrameFilter("file_filter")

main branch
live_out_filter =ForkFrameFilter("live_out_filter",gate_filter,file_filter)
livethread =LiveThread("livethread")

Like in the previous example, when constructing programmatically the framefilter chain, we start from the outer leafs
of the tree (in this case, from “info_filter”, etc.) and move from the outer edge towards the main branch.

Let’s run it like this:

24 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

close the gate before streaming
gate_filter.unSet()

livethread.startCall()
livethread.registerStreamCall(ctx)
livethread.playStreamCall(ctx)
time.sleep(5)

print("start writing to disk")
file_filter.activate("stream.mkv")
time.sleep(5)

print("let's get verbose")
gate_filter.set()
time.sleep(2)

print("close file and exit")
file_filter.deActivate()

livethread.stopCall()

print("bye")

Here we first close the gate, so no information about the frames is printed to the terminal. We write the stream to the
disk by calling “activate” method of the FileFrameFilter. After 5 secs. we turn on the gate and start getting information
about the frames into the screen. Finally we close the file by calling “deActivate”.

You can play the resulting “stream.mkv” with your favorite media player.

Note: Valkka is not a mediaplayer that understands thousands of codecs and container formats. Emphasis is on an
internally consistent (for that a single or a few codec/container formats are enough, i.e. what we write we can also
read) video management library. At the moment only H264 video is accepted. Container format is matroska (mkv).

FrameFilter reference

API level 1 considered in this lesson, is nothing but cpp code wrapped to python.

To see all available FrameFilters, refer to the cpp documentation.

In the cpp docs, only a small part of the member methods are wrapped and visible from python (these are marked with
the “pyapi” tag)

Note: FrameFilter chains are nothing but callback cascades - they will block the execution of LiveThread when
executing code. At some moment, the callback chain should terminate and continue in another, independent thread.
This will be discussed in the next lesson.

Controlling verbosity

If libValkka dumps too much to your terminal, you can shut if off by using loglevel_silent.

Verbosity can be controlled like this:

5.3. Lessons 25

https://elsampsa.github.io/valkka-core/html/group__filters__tag.html

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

from valkka.api2.logging import setValkkaLogLevel, setLogLevel_livelogger, loglevel_
→˓silent, loglevel_normal

setValkkaLogLevel(loglevel_silent) # set all loggers to silent
setLogLevel_livelogger(loglevel_normal) # set an individual loggers

5.3.2 Lesson 2 : Decoding

Download lesson [here]

Let’s consider the following filtergraph:

Streaming part | Decoding part
|

(LiveThread:livethread) -->> (AVThread:avthread) --> {InfoFrameFilter:info_filter}

Like in the previous lessons, we are reading frames from an IP camera. Instead of churning them through a series of
filters, we pass them to another, independently running thread that performs decoding (AVThread).

Let’s list all the symbols used until now and the corresponding objects:

Symbol Base class Explanation
() Thread An independently running thread
>> Crossover between two threads
{} FrameFilter A framefilter

That’s all you need to create complex filtergraphs with Valkka.

We start as usual, by constructing the filterchain from end-to-beginning:

decoding part
info_filter =InfoFrameFilter("info_filter")
avthread =AVThread("avthread",info_filter)

AVThread is a thread that does all the heavy-lifting of decoding from H264 to bitmap images. It decodes on the CPU.
If you fancy to use a hardware accelerator, then you could substitute AVThread with VAAPIThread instead.

Next, we need a framefilter to feed the frames into AVThread. This framefilter is requested from the AVThread itself:

streaming part
av_in_filter =avthread.getFrameFilter()
livethread =LiveThread("livethread")

Finally, proceed as before: pass av_in_filter as a parameter to the connection context, start threads, etc.

ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:nordic12345@192.168.
→˓1.41", 1, av_in_filter)

Start threads. Starting the threads should be done in end-to-beginning order (in the same order we constructed the
filterchain).

avthread.startCall()
livethread.startCall()

start decoding

(continues on next page)

26 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

avthread.decodingOnCall()

livethread.registerStreamCall(ctx)
livethread.playStreamCall(ctx)
time.sleep(5)

stop decoding
avthread.decodingOffCall()

Stop threads. Stop threads in beginning-to-end order (i.e., following the filtergraph from left to right).

livethread.stopCall()
avthread.stopCall()

print("bye")

You will see output like this:

InfoFrameFilter: info_filter start dump>>
InfoFrameFilter: FRAME : <AVBitmapFrame: timestamp=1525870759898 subsession_index=0
→˓slot=1 / h=1080; w=1920; l=(1920,960,960); f=12>
InfoFrameFilter: PAYLOAD : [47 47 47 47 47 47 47 47 47 47]
InfoFrameFilter: timediff: -22
InfoFrameFilter: info_filter <<end dump
InfoFrameFilter: info_filter start dump>>
InfoFrameFilter: FRAME : <AVBitmapFrame: timestamp=1525870759938 subsession_index=0
→˓slot=1 / h=1080; w=1920; l=(1920,960,960); f=12>
InfoFrameFilter: PAYLOAD : [47 47 47 47 47 47 47 47 47 47]
InfoFrameFilter: timediff: -11
InfoFrameFilter: info_filter <<end dump
...
...

So, instead of H264 packets, we have decoded bitmap frames here.

In the next lesson, we’ll dump them on the screen.

When using the API to pass frames between threads, that’s all you need to know for now.

“Under the hood”, however, things are a bit more complex.

The framefilter requested from AVThread writes into AVThread’s internal FrameFifo. This is a first-in-first-out queue
where a copy of the incoming frame is placed. Frames are copied into pre-reserved frames, taken from a pre-reserved
stack. Both the fifo and the stack are thread-safe and mutex-protected. The user has the possibility to define the size
of the stack when instantiating AVThread.

For more details, see the cpp documentation and especially the FrameFifo class.

However, all these gory details are not a concern for the API user at this stage. :)

Note: There are several FrameFifo and Thread classes in Valkka. See the inheritance diagram. Only a small subset
of the methods should be called by the API user. These typically end with the word “Call” (and are marked with the
“<pyapi>” tag).

5.3.3 Lesson 3 : Streaming to the X-window system

5.3. Lessons 27

https://elsampsa.github.io/valkka-core/html/process_chart.html
https://elsampsa.github.io/valkka-core/html/classFrameFifo.html
https://elsampsa.github.io/valkka-core/html/inherits.html

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

One camera to one window

Download lesson [here]

Let’s consider the following filtergraph with streaming, decoding and presentation:

Streaming part
(LiveThread:livethread)---+

|
Decoding part |
(AVThread:avthread) <<----+
|
| Presentation part
+--->> (OpenGLThread:glthread)

Compared to the previous lesson, we’re continuying the filterchain from AVThread to OpenGLThread. OpenGLThread
is responsible for sending the frames to designated x windows.

Note: OpenGLThread uses OpenGL texture streaming. YUV interpolation to RGB is done on the GPU, using the
shader language.

Start constructing the filterchain from end-to-beginning:

presentation part
glthread =OpenGLThread ("glthread")
gl_in_filter =glthread.getFrameFilter()

We requested a framefilter from the OpenGLThread. It is passed to the AVThread:

decoding part
avthread =AVThread("avthread",gl_in_filter)
av_in_filter =avthread.getFrameFilter()

streaming part
livethread =LiveThread("livethread")

Define the connection to the IP camera as usual, with slot number “1”:

ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:nordic12345@192.
→˓168.1.41", 1, av_in_filter)
ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:12345@192.168.0.157
→˓", 1, av_in_filter)

Start all threads, start decoding, and register the live stream. Starting the threads should be done in end-to-beginning
order (in the same order we constructed the filterchain).

glthread.startCall()
avthread.startCall()
livethread.startCall()

start decoding
avthread.decodingOnCall()

livethread.registerStreamCall(ctx)
livethread.playStreamCall(ctx)

Now comes the new bit. First, we create a new X window on the screen:

28 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

window_id =glthread.createWindow()

We could also use the window id of an existing X window.

Next, we create a new “render group” to the OpenGLThread. Render group is a place where we can render bitmaps -
in this case it’s just the X window.

glthread.newRenderGroupCall(window_id)

We still need a “render context”. Render context is a mapping from a frame source (in this case, the IP camera) to a
certain render group (X window) on the screen:

context_id=glthread.newRenderContextCall(1,window_id,0) # slot, render group, z

The first argument to newRenderContextCall is the slot number. We defined the slot number for the IP camera when
we used the LiveConnectionContext.

Now, each time a frame with slot number “1” arrives to OpenGLThread it will be rendered to render group “win-
dow_id”.

Stream for a while, and finally, close all threads:

time.sleep(10)

glthread.delRenderContextCall(context_id)
glthread.delRenderGroupCall(window_id)

stop decoding
avthread.decodingOffCall()

Close threads. Stop threads in beginning-to-end order (i.e., following the filtergraph from left to right).

livethread.stopCall()
avthread.stopCall()
glthread.stopCall()

print("bye")

So, all nice and simple with the API.

However, here it is important to understand what’s going on “under-the-hood”. Similar to AVThread, OpenGLThread
manages a stack of YUV bitmap frames. These are pre-reserved on the GPU (for details, see the OpenGLFrameFifo
class in the cpp documentation).

The number of pre-reserved frames you need, depends on the buffering time used to queue the frames.

You can adjust the number of pre-reserved frames for different resolutions and the buffering time like this:

gl_ctx =OpenGLFrameFifoContext()
gl_ctx.n_720p =20
gl_ctx.n_1080p =20
gl_ctx.n_1440p =20
gl_ctx.n_4K =20

glthread =OpenGLThread("glthread", gl_ctx, 300)

Here we have reserved 20 frames for each available resolution. A buffering time of 300 milliseconds is used.

For example, if you are going to use two 720p cameras, each at 20 fps, with 300 millisecond buffering time, then you
should reserve

5.3. Lessons 29

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

2 * 20 fps * 0.3 sec = 12 frames

for 720p. If this math is too hard for you, just reserve several hundred frames for each frame resolution (or until you
run out of GPU memory). :)

If you’re extremely ambitious libValkka user who wants to use that brand-new 8K running at 80 frames per second,
then read this first.

One camera to several windows

Download lesson [here]

Streaming the same camera to several X windows is trivial; we just need to add more render groups (aka x windows)
and render contexes (mappings):

id_list=[]

for i in range(10):
window_id =glthread.createWindow()
glthread.newRenderGroupCall(window_id)
context_id=glthread.newRenderContextCall(1,window_id,0)
id_list.append((context_id,window_id)) # save context and window ids

time.sleep(10)

for ids in id_list:
glthread.delRenderContextCall(ids[0])
glthread.delRenderGroupCall(ids[1])

Presenting the same stream in several windows is a typical situation in video surveillance applications, where one
would like to have the same stream be shown simultaneously in various “views”

Keep in mind that here we have connected to the IP camera only once - and that the H264 stream has been decoded
only once.

Note: When streaming video (from multiple sources) to multiple windows, OpenGL rendering synchronization to
vertical refresh (“vsync”) should be disabled, as it will limit your total framerate to the refresh rate of your monitor
(i.e. to around 50 frames per second). On MESA based X.org drivers (intel, nouveau, etc.), this can be achieved from
command line with “export vblank_mode=0”. With nvidia proprietary drivers, use the nvidia-settings program. You
can test if vsync is disabled with the “glxgears” command (in package “mesa-utils”). Glxgears should report 1000+
frames per second with vsync disabled.

Decoding multiple streams

Download lesson [here]

Let’s consider decoding the H264 streams from multiple RTSP cameras. For that, we’ll be needing several decoding
AVThreads. Let’s take another look at the filtergraph:

Streaming part
(LiveThread:livethread)---+

|
Decoding part | [This part of the filtergraph should be replicated]
(AVThread:avthread) <<----+

(continues on next page)

30 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

|
| Presentation part
+--->> (OpenGLThread:glthread)

LiveThread and OpenGLThread can deal with several simultaneous media streams, while for decoding, we need one
thread per decoder. Take a look at the library architecture page

It’s a good idea to encapsulate the decoding part into its own class. This class takes as an input, the framefilter where
it writes the decoded frames and as an input, the stream rtsp address:

class LiveStream:

def __init__(self, gl_in_filter, address, slot):
self.gl_in_filter =gl_in_filter

self.address =address
self.slot =slot

decoding part
self.avthread =AVThread("avthread", self.gl_in_filter)
self.av_in_filter =self.avthread.getFrameFilter()

define connection to camera
self.ctx =LiveConnectionContext(LiveConnectionType_rtsp, self.address, self.slot,

→˓self.av_in_filter)

self.avthread.startCall()
self.avthread.decodingOnCall()

def close(self):
self.avthread.decodingOffCall()
self.avthread.stopCall()

Construct the filtergraph from end-to-beginning:

presentation part
glthread =OpenGLThread ("glthread")
gl_in_filter =glthread.getFrameFilter()

streaming part
livethread =LiveThread("livethread")

start threads
glthread.startCall()
livethread.startCall()

Instantiate LiveStreams. This will also start the AVThreads. Frames from the first camera are tagged with slot number
1, while frames from the second camera are tagged with slot number 2:

stream1 = LiveStream(gl_in_filter, "rtsp://admin:nordic12345@192.168.1.41", 1) # slot
→˓1
stream2 = LiveStream(gl_in_filter, "rtsp://admin:nordic12345@192.168.1.42", 2) # slot
→˓2

Register streams to LiveThread and start playing them:

5.3. Lessons 31

https://elsampsa.github.io/valkka-core/html/process_chart.html

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

livethread.registerStreamCall(stream1.ctx)
livethread.playStreamCall(stream1.ctx)

livethread.registerStreamCall(stream2.ctx)
livethread.playStreamCall(stream2.ctx)

Create x windows, and map slot numbers to certain x windows:

stream1 uses slot 1
window_id1 =glthread.createWindow()
glthread.newRenderGroupCall(window_id1)
context_id1 =glthread.newRenderContextCall(1, window_id1, 0)

stream2 uses slot 2
window_id2 =glthread.createWindow()
glthread.newRenderGroupCall(window_id2)
context_id2 =glthread.newRenderContextCall(2, window_id2, 0)

Render video for a while, stop threads and exit:

time.sleep(10)

glthread.delRenderContextCall(context_id1)
glthread.delRenderGroupCall(window_id1)

glthread.delRenderContextCall(context_id2)
glthread.delRenderGroupCall(window_id2)

Stop threads in beginning-to-end order
livethread.stopCall()
stream1.close()
stream2.close()
glthread.stopCall()

print("bye")

There are many ways to organize threads, render contexes (slot to x window mappings) and complex filtergraphs into
classes. It’s all quite flexible and left for the API user.

One could even opt for an architecture, where there is a LiveThread and OpenGLThread for each individual stream
(however, this is not recommended).

The level 2 API provides ready-made filtergraph classes for different purposes (similar to class LiveStream constructed
here).

5.3.4 Lesson 4 : Receiving Frames at Python

Here we start with two separate python programs: (1) a server that reads RTSP cameras and writes RGB frames into
shared memory and (2) a client that reads those RGB frames from memory. For the client program, two versions are
provided, the API level 2 being the most compact one.

Such scheme is only for demo/tutorial purposes. Normally you would start both the server and client from within the
same python program. We give an example of that as well.

32 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Server side

Download server side [here]

By now, we have learned how to receive, decode and send streams to the x window system. In this chapter, we do all
that, but at the same time, also send copies of the decoded frames to another python process.

The filtergraph looks like this:

(LiveThread:livethread) -------------------------------------+ main branch, streaming
|

{ForkFrameFilter: fork_filter} <----(AVThread:avthread) << --+ main branch, decoding
|

branch 1 +->> (OpenGLThread:glthread)
|

branch 2 +--> {IntervalFrameFilter: interval_filter} --> {SwScaleFrameFilter:
→˓sws_filter} --> {RGBSharedMemFrameFilter: shmem_filter}

We are using the ForkFrameFilter to branch the decoded stream into two branches. Branch 1 goes to screen, while
branch 2 does a lot of new stuff.

In branch 2, IntervalFrameFilter passes a frame through on regular intervals. In our case we are going to use an interval
of 1 second, i.e. even if your camera is sending 25 fps, at the other side of IntervalFrameFilter we’ll be observing only
1 fps.

SwScaleFrameFilter does YUV => RGB interpolation on the CPU. The final, interpolated RGB frame is passed to the
posix shared memory with the RGBSharedMemFrameFilter. From there it can be read by another python process.

(Remember that branch 1 does YUV => RGB interpolation as well, but on the GPU (and at 25 fps rate))

To summarize, branch 1 interpolates once a second a frame to RGB and passes it to shared memory. The size of the
frame can be adjusted.

Let’s start the construction of the filtergraph by defining some parameters. Frames are passed to SwScaleFrameFilter
at 1000 millisecond intervals. The image dimensions of the frame passed into shared memory, will be one quarter of
a full-hd frame:

define yuv=>rgb interpolation interval
image_interval=1000 # YUV => RGB interpolation to the small size is done each 1000
→˓milliseconds and passed on to the shmem ringbuffer

define rgb image dimensions
width =1920//4
height =1080//4

RGBSharedMemFrameFilter needs also a unique name and the size of the shared memory ring-buffer:

posix shared memory
shmem_name ="lesson_4" # This identifies posix shared memory - must be unique
shmem_buffers =10 # Size of the shmem ringbuffer

Next, we construct the filterchain as usual, from end-to-beginning:

branch 1
glthread =OpenGLThread("glthread")
gl_in_filter =glthread.getFrameFilter()

branch 2
shmem_filter =RGBShmemFrameFilter(shmem_name, shmem_buffers, width, height)

(continues on next page)

5.3. Lessons 33

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

shmem_filter =BriefInfoFrameFilter("shmem") # a nice way for debugging to see of
→˓you are actually getting any frames here ..
sws_filter =SwScaleFrameFilter("sws_filter", width, height, shmem_filter)
interval_filter =TimeIntervalFrameFilter("interval_filter", image_interval, sws_
→˓filter)

fork
fork_filter =ForkFrameFilter("fork_filter", gl_in_filter, interval_filter)

main branch
avthread =AVThread("avthread",fork_filter)
av_in_filter =avthread.getFrameFilter()
livethread =LiveThread("livethread")

Define connection to camera: frames from 192.168.1.41 are written to live_out_filter and tagged with slot number 1:

ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:nordic12345@192.
→˓168.1.41", 1, av_in_filter)
ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:123456@192.168.0.134
→˓", 1, av_in_filter)

Start processes, stream for 60 seconds and exit:

glthread.startCall()
avthread.startCall()
livethread.startCall()

start decoding
avthread.decodingOnCall()

livethread.registerStreamCall(ctx)
livethread.playStreamCall(ctx)

create an X-window
window_id =glthread.createWindow()
glthread.newRenderGroupCall(window_id)

maps stream with slot 1 to window "window_id"
context_id=glthread.newRenderContextCall(1,window_id,0)

time.sleep(60)

glthread.delRenderContextCall(context_id)
glthread.delRenderGroupCall(window_id)

stop decoding
avthread.decodingOffCall()

stop threads
livethread.stopCall()
avthread.stopCall()
glthread.stopCall()

print("bye")

Note: In the previous lessons, all streaming has taken place at the cpp level. Here we are starting to use posix shared

34 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

memory and semaphores in order to share frames between python processes, with the ultimate goal to share them
with machine vision processes. However, if you need very high-resolution and high fps solutions, you might want to
implement the sharing of frames and your machine vision routines directly at the cpp level.

Client side: API level 2

Download client side API level 2 [here]

This is a separate python program for reading the frames that are written by Valkka to the shared memory.

The parameters used both in the server side (above) and on the client side (below) must be exactly the same and
the client program should be started after the server program (and while the server is running). Otherwise undefined
behaviour will occur.

The used shmem_name(s) should be same in both server and client, but different for another server/client pair.

from valkka.api2 import ShmemRGBClient

width = 1920//4
height = 1080//4

This identifies posix shared memory - must be same as in the server side
shmem_name = "lesson_4"
shmem_buffers = 10 # Size of the shmem ringbuffer

client = ShmemRGBClient(
name=shmem_name,
n_ringbuffer=shmem_buffers,
width=width,
height=height,
mstimeout=1000, # client timeouts if nothing has been received in 1000

→˓milliseconds
verbose=False

)

The mstimeout defines the semaphore timeout in milliseconds, i.e. the time when the client returns even if no frame
was received:

while True:
index, meta = client.pullFrame()
if (index == None):

print("timeout")
else:

data = client.shmem_list[index][0:meta.size]
data = data.reshape((meta.height, meta.width, 3))
print("got data: ", data.shape)

The client.shmem_list is a list of numpy arrays, while isize defines the extent of data in the array. This example simply
prints out the first ten bytes of the RGB image.

Client side: openCV

Download client side openCV example [here]

OpenCV is a popular machine vision library. We modify the previous example to make it work with openCV like this:

5.3. Lessons 35

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

import cv2
from valkka.api2 import ShmemRGBClient

width = 1920//4
height = 1080//4

This identifies posix shared memory - must be same as in the server side
shmem_name = "lesson_4"
shmem_buffers = 10 # Size of the shmem ringbuffer

client = ShmemRGBClient(
name=shmem_name,
n_ringbuffer=shmem_buffers,
width=width,
height=height,
mstimeout=1000, # client timeouts if nothing has been received in 1000

→˓milliseconds
verbose=False

)

while True:
index, meta = client.pullFrame()
if (index == None):

print("timeout")
continue

data = client.shmem_list[index][0:meta.size]
print("data : ", data[0:min(10, meta.size)])
print("width : ", meta.width)
print("height : ", meta.height)
print("slot : ", meta.slot)
print("time : ", meta.mstimestamp)
img = data.reshape((meta.height, meta.width, 3))
img2 =imutils.resize(img, width=500)
img = cv2.GaussianBlur(img, (21, 21), 0)
print("got frame", img.shape)
depending on how you have installed your openCV, this might not work:
(use at your own risk)
#cv2.imshow("valkka_opencv_demo", img)
#cv2.waitKey(1)

After receiving the RGB frame, some gaussian blur is applied to the image. Then it is visualized using openCV’s own
“high-gui” infrastructure. If everything went ok, you should see a blurred image of your video once in a second.

Start this script after starting the server side script (server side must also be running).

Client side: API level 1

Download client side example [here]

API level 2 provides extra wrapping. Let’s see what goes on at the lowest level (plain, cpp wrapped python code).

from valkka.core import *

width = 1920//4
height = 1080//4

(continues on next page)

36 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

shmem_name = "lesson_4" # This identifies posix shared memory - must be unique
shmem_buffers = 10 # Size of the shmem ringbuffer

The wrapped cpp class is SharedMemRingBufferRGB (at the server side, RGBShmemFrameFilter is using Shared-
MemRingBufferRGB):

shmem = SharedMemRingBufferRGB(shmem_name, shmem_buffers, width, height,
1000, False) # shmem id, buffers, w, h, timeout,

→˓False=this is a client

Next, get handles to the shared memory as numpy arrays:

shmem_list = []
for i in range(shmem_buffers):

getNumpyShmem defined in the swig interface file
shmem_list.append(getNumpyShmem(shmem, i))
print("got element i=", i)

Finally, start reading frames.

shmem.clientPullPy() returns a tuple with the shared memory ringbuffer index and metadata.

while True:
tup = shmem.clientPullPy()
index = tup[0]
if index < 0:

print("timeout")
continue

isize = tup[1]
width = tup[2]
height = tup[3]
slot = tup[4]
mstimestamp = tup[5]
print("got index, size =", index, isize)
ar = shmem_list[index][0:isize] # this is just a numpy array
ar = ar.reshape((height, width, 3)) # this is your rgb image
print("payload =", ar.shape)

Cpp documentation for Valkka shared memory classes be found here.

Server + Client

Download server + client example [here]

Here we have a complete example running both server & client within the same python file.

You could wrap the client part further into a python thread, releasing your main python process to, say, run a GUI.

Yet another possibility is to run the server and client in separate multiprocesses. In this case one must be extra carefull
to spawn the multiprocesses before instantiating any libValkka objects, since libValkka relies heavily on multithreading
(this is the well-known “fork must go before threading” problem).

These problems have been addressed/resolved more deeply in the valkka-live video surveillance client.

But let’s turn back to the complete server + client example

5.3. Lessons 37

https://elsampsa.github.io/valkka-core/html/group__shmem__tag.html

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

import time
from valkka.core import *
from valkka.api2 import ShmemRGBClient

The filtergraph, once again:

(LiveThread:livethread) -------------------------------------+ main branch, streaming
|

{ForkFrameFilter: fork_filter} <----(AVThread:avthread) << --+ main branch, decoding
|

branch 1 +->> (OpenGLThread:glthread)
|

branch 2 +--> {IntervalFrameFilter: interval_filter} --> {SwScaleFrameFilter:
→˓sws_filter} --> {RGBSharedMemFrameFilter: shmem_filter}

define yuv=>rgb interpolation interval
image_interval=1000 # YUV => RGB interpolation to the small size is done each 1000
→˓milliseconds and passed on to the shmem ringbuffer

define rgb image dimensions
width =1920//4
height =1080//4

RGBSharedMemFrameFilter needs unique name and the size of the shared memory ring-buffer:

posix shared memory
shmem_name ="lesson_4" # This identifies posix shared memory - must be unique
shmem_buffers =10 # Size of the shmem ringbuffer

Next, we construct the filterchain as usual, from end-to-beginning:

branch 1
glthread =OpenGLThread("glthread")
gl_in_filter =glthread.getFrameFilter()

branch 2
shmem_filter =RGBShmemFrameFilter(shmem_name, shmem_buffers, width, height)
shmem_filter =BriefInfoFrameFilter("shmem") # a nice way for debugging to see of
→˓you are actually getting any frames here ..
sws_filter =SwScaleFrameFilter("sws_filter", width, height, shmem_filter)
interval_filter =TimeIntervalFrameFilter("interval_filter", image_interval, sws_
→˓filter)

fork
fork_filter =ForkFrameFilter("fork_filter", gl_in_filter, interval_filter)

main branch
avthread =AVThread("avthread",fork_filter)
av_in_filter =avthread.getFrameFilter()
livethread =LiveThread("livethread")

Define connection to camera: frames from the IP camera are written to live_out_filter and tagged with slot number 1:

ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:nordic12345@192.
→˓168.1.41", 1, av_in_filter)
ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:123456@192.168.0.134
→˓", 1, av_in_filter)

38 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Start threads:

glthread.startCall()
avthread.startCall()
livethread.startCall()

start decoding
avthread.decodingOnCall()

livethread.registerStreamCall(ctx)

create an X-window
window_id =glthread.createWindow()
glthread.newRenderGroupCall(window_id)

maps stream with slot 1 to window "window_id"
context_id=glthread.newRenderContextCall(1,window_id,0)

Ok, the server is alive and running. Let’s do the client part for receiving frames.

client = ShmemRGBClient(
name=shmem_name,
n_ringbuffer=shmem_buffers,
width=width,
height=height,
mstimeout=1000, # client timeouts if nothing has been received in 1000

→˓milliseconds
verbose=False

)

The client is ready to go. Before starting to receive frames, start playing the RTSP camera

livethread.playStreamCall(ctx)

Read 10 frames & exit

print("client starting")
cc = 0
while True:

index, meta = client.pullFrame()
if (index == None):

print("timeout")
else:

data = client.shmem_list[index][0:meta.size]
data = data.reshape((meta.height, meta.width, 3))
print("got data: ", data.shape)
cc += 1

if cc >= 10:
break

print("stopping..")

Clear the server

glthread.delRenderContextCall(context_id)
glthread.delRenderGroupCall(window_id)

stop decoding

(continues on next page)

5.3. Lessons 39

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

avthread.decodingOffCall()

stop threads
livethread.stopCall()
avthread.stopCall()
glthread.stopCall()

time.sleep(1)

print("bye")

Receiving frag-MP4 at Python

Download frag-MP4 example [here]

Fragmented MP4 (frag-MP4) is a container format suitable for live streaming and playing the video in most web
browsers. For more information about this, see here.

With libValkka you can mux your IP camera’s H264 stream on-the-fly into frag-MP4 and then push it into cloud, using
Python3 only.

This is similar what we have just done for the RGB bitmap frames. Now, instead of RGB24 frames, we receive
frag-MP4 to the python side.

And, of course, we could do all the following things simultaneously: decode, show on screen, push RGB24 frames
for video analysis, push frag-MP4 to your browser, etc. However, for clarity, here we just show the video on screen &
receive frag-MP4 frames in our python process.

import time
from valkka.core import *
from valkka.api2 import FragMP4ShmemClient

The filtergraph for simultaneous video viewing and frag-MP4 muxing looks like this:

(LiveThread:livethread) -->----------------------------------+ main branch (forks
→˓into two)

|
(OpenGLThread:glthread) <----(AVThread:avthread) << ---------+ decoding branch

|
+---<-------------+ mux branch
|
+--> {FragMP4MuxFrameFilter:fragmp4muxer} -->

→˓{FragMP4ShmemFrameFilter:fragmp4shmem}

shmem_buffers = 10 # 10 element in the ring-buffer
shmem_name = "lesson_4_c" # unique name identifying the shared memory
cellsize = 1024*1024*3 # max size for each MP4 fragment
timeout = 1000 # in ms

decoding branch
glthread =OpenGLThread("glthread")
gl_in_filter =glthread.getFrameFilter()
avthread =AVThread("avthread",gl_in_filter)
av_in_filter =avthread.getFrameFilter()

mux branch
(continues on next page)

40 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

shmem_filter =FragMP4ShmemFrameFilter(shmem_name, shmem_buffers, cellsize)
mux_filter =FragMP4MuxFrameFilter("fragmp4muxer", shmem_filter)
mux_filter.activate() # don't forget!

fork
fork_filter =ForkFrameFilter("fork_filter", av_in_filter, mux_filter)

main branch
livethread =LiveThread("livethread")

Define connection to camera: frames from the IP camera are written to live_out_filter and tagged with slot number 1:

ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:nordic12345@192.
→˓168.1.41", 1, fork_filter)
ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:123456@192.168.0.134
→˓", 1, fork_filter)

Start threads:

glthread.startCall()
avthread.startCall()
livethread.startCall()

start decoding
avthread.decodingOnCall()

livethread.registerStreamCall(ctx)

create an X-window
window_id =glthread.createWindow()
glthread.newRenderGroupCall(window_id)

maps stream with slot 1 to window "window_id"
context_id=glthread.newRenderContextCall(1,window_id,0)

Ok, the server is alive and running. Let’s do the client part for receiving frames.

client = FragMP4ShmemClient(
name=shmem_name,
n_ringbuffer=shmem_buffers,
n_size=cellsize,
mstimeout=timeout,
verbose=False

)

The client is ready to go. Before starting to receive frames, start playing the RTSP camera

livethread.playStreamCall(ctx)

Read 10 frames & exit

print("client starting")
cc = 0
while True:

index, meta = client.pullFrame()
if (index == None):

(continues on next page)

5.3. Lessons 41

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

print("timeout")
else:

data = client.shmem_list[index][0:meta.size]
print("got", meta.name.decode("utf-8"), "of size", meta.size)
cc += 1

if cc >= 100:
break

print("stopping..")

mux_filter.deActivate() # don't forget!

Clear the server

glthread.delRenderContextCall(context_id)
glthread.delRenderGroupCall(window_id)

stop decoding
avthread.decodingOffCall()

stop threads
livethread.stopCall()
avthread.stopCall()
glthread.stopCall()

print("bye")

Advanced topics

By now you have learned how to pass frames from the libValkka infrastructure into python.

When creating more serious solutions, you can use a single python program to span multiprocesses (using Python’s
multiprocessing module) into servers and clients.

In these cases you must remember to span all multiprocesses in the very beginning of your code and then arrange
an interprocess communication between them, so that the multiprocesses will instantiate the server and client in the
correct order.

You can also create shared memory servers, where you can feed frames from the python side (vs. at the cpp side)

LibValkka shared memory server and client also features a posix file-descriptor API. It is convenient in cases, where
a single process is listening simultaneously to several shared memory servers, and you want to do the i/o efficiently:
you can use python’s “select” module to do efficient “multiplexing” of pulling frames from several shmem clients.

For example, the Valkka Live program takes advantage of these features. It performs the following joggling of the
frames through the shared memory:

1. Several shared memory servers, each one sending video from one camera.

2. Several client processes, each one receiving video from a shared memory server. Each client process establish
it’s own shared memory server for further sharing of the frames.

3. A master process that listens to multiple clients at the same time.

Number (1) works at the cpp side. (2) Is a separate multiprocess running OpenCV-based analysis. (3) Is a common
Yolo object detector for all the clients.

For an example of a more serious multiprocessing project, please take a look here.

42 Chapter 5. Tutorial

https://github.com/elsampsa/valkka-examples/tree/master/example_projects/basic

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

5.3.5 Lesson 5 : Transmitting stream

Sending multicast

Download lesson [here]

In this lesson, we are receiving frames from an IP camera using LiveThread and recast those frames to a multicast
address using another LiveThread. The filterchain looks like this:

(LiveThread:livethread) --> {InfoFrameFilter:info_filter) -->>
→˓(LiveThread:livethread2)

Let’s start by importing Valkka:

import time
from valkka.core import *

Live555’s default output packet buffer size might be too small, so let’s make it bigger before instantiating any
LiveThreads:

setLiveOutPacketBuffermaxSize(95000)

Construct the filtergraph from end-to-beginning:

livethread2 =LiveThread("livethread2")
live_in_filter =livethread2.getFrameFilter()
info_filter =InfoFrameFilter("info_filter",live_in_filter)
livethread =LiveThread("livethread")

Start threads

livethread2.startCall()
livethread. startCall()

Define stream source: incoming frames from IP camera 192.168.1.41 are tagged with slot number “2” and they are
written to “info_filter”:

ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:nordic12345@192.
→˓168.1.41", 2, info_filter)

Define stream sink: all outgoing frames with slot number “2” are sent to port 50000:

out_ctx =LiveOutboundContext(LiveConnectionType_sdp, "224.1.168.91", 2, 50000)

Start playing:

livethread2.registerOutboundCall(out_ctx)
livethread. registerStreamCall(ctx)
livethread. playStreamCall(ctx)

Stream and recast to multicast for a while:

time.sleep(60)

livethread. stopStreamCall(ctx)
livethread. deregisterStreamCall(ctx)
livethread2.deregisterOutboundCall(out_ctx)

5.3. Lessons 43

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Stop threads in beginning-to-end order

livethread. stopCall();
livethread2.stopCall();

print("bye")

To receive the multicast stream, you need this file, save it as “multicast.sdp”:

v=0
o=- 0 0 IN IP4 127.0.0.1
s=No Name
c=IN IP4 224.1.168.91
t=0 0
a=tool:libavformat 56.36.100
m=video 50000 RTP/AVP 96
a=rtpmap:96 H264/90000
a=fmtp:96 packetization-mode=1
a=control:streamid=0

Then you can test that the stream is multicasted (while running the python script) with:

ffplay multicast.sdp

(feel free to launch this command several times simultaneously)

Note: Receiving and recasting the stream can also be done using a single LiveThread only. This is left as an excercise.

Using the RTSP server

Download lesson [here]

In this lesson, we establish an on-demand RTSP server at the localhost.

Stream is read from an IP camera and then re-streamed (shared) to a local RTSP server that serves at port 8554. While
this snippet is running, you can test the RTSP server with:

ffplay rtsp://127.0.0.1:8554/stream1

Let’s start by importing Valkka:

import time
from valkka.core import *

Live555’s default output packet buffer size might be too small, so let’s make it bigger before instantiating any
LiveThreads:

setLiveOutPacketBuffermaxSize(95000)

Construct the filtergraph from end-to-beginning:

livethread2 =LiveThread("livethread2")
live_in_filter =livethread2.getFrameFilter()
info_filter =InfoFrameFilter("info_filter",live_in_filter)
livethread =LiveThread("livethread")

44 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Before starting the threads, establish an RTSP server on livethread2 at port 8554:

livethread2.setRTSPServer(8554);

Start threads

livethread2.startCall()
livethread. startCall()

Define stream source: incoming frames from IP camera 192.168.1.41 are tagged with slot number “2” and they are
written to “info_filter”:

ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:nordic12345@192.
→˓168.1.41", 2, info_filter)

Define stream sink: all outgoing frames with slot number “2” are sent to the RTSP server, with substream id “stream1”:

out_ctx =LiveOutboundContext(LiveConnectionType_rtsp, "stream1", 2, 0)

Start playing:

livethread2.registerOutboundCall(out_ctx)
livethread. registerStreamCall(ctx)
livethread. playStreamCall(ctx)

Stream and recast to the RTSP server for a while:

time.sleep(60)

livethread. stopStreamCall(ctx)
livethread. deregisterStreamCall(ctx)
livethread2.deregisterOutboundCall(out_ctx)

Stop threads in beginning-to-end order

livethread. stopCall();
livethread2.stopCall();

print("bye")

5.3.6 Lesson 6 : Writing / reading stream

Download lesson [here]

In this lesson, we are (a) writing from a live stream to a file and (b) reading the file, decoding the stream and presenting
it on the screen. The filtergraph goes like this:

*** (a) writing ***

(LiveThread:livethread) --> {FileFrameFilter:file_filter}

*** (b) reading ***

Reading part
(FileThread:filethread) -----+

(continues on next page)

5.3. Lessons 45

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

|
Decoding part |
(AVThread:avthread) << ------+

|
| Presentation part
+-->> (OpenGLThread:glthread)

Note that live and file streams are treated on an equal basis and with a similar filtergraph. We could also send the file
over the net as a multicast stream.

Let’s start by importing Valkka:

import time
from valkka.core import *

debug_log_all()

Writing is done by piping the stream into a FileFrameFilter:

file_filter =FileFrameFilter("file_filter")
livethread =LiveThread("livethread")

For reading, decoding and presenting, we construct the filtergraph as usual, from end-to-beginning:

presentation part
glthread =OpenGLThread ("glthread")
gl_in_filter =glthread.getFrameFilter()

For file streams, the execution should block for frame bursts, so we request a blocking input FrameFilter from the
AVThread:

avthread =AVThread("avthread",gl_in_filter)
av_in_filter =avthread.getBlockingFrameFilter()

reading part
filethread =FileThread("filethread")

Starting LiveThread will stream the frames to FileFrameFilter:

livethread .startCall()

ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://
→˓admin:nordic12345@192.168.1.41", 1, file_filter)
stream from 192.168.1.41, tag frames with slot number 1 and write to file_filter

livethread .registerStreamCall(ctx)
livethread .playStreamCall(ctx)

In order to start writing to disk, FileFrameFilter’s “activate” method must be called with the filename. Only matroska
(.mkv) files are supported:

print("writing to file during 30 secs")
file_filter.activate("kokkelis.mkv")

stream for 30 secs
time.sleep(30)

(continues on next page)

46 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

close the file
file_filter.deActivate()

stop livethread
livethread.stopCall()

File “kokkelis.mkv” has been created. Next, let’s setup stream decoding, presenting, etc. as usual and read the file:

print("reading file")
glthread .startCall()
filethread .startCall()
avthread .startCall()

start decoding
avthread.decodingOnCall()

create an x-window
window_id =glthread.createWindow()
glthread.newRenderGroupCall(window_id)

maps stream with slot 1 to window "window_id"
context_id =glthread.newRenderContextCall(1, window_id, 0)

Open the file by sending it a call with the FileContext (file_ctx) identifying the file stream:

print("open file")
file_ctx =FileContext("kokkelis.mkv", 1, av_in_filter) # read from file "kokkelis.mkv
→˓", tag frames with slot number 1 and write to av_in_filter
filethread.openFileStreamCall(file_ctx)

Playing, seeking and stopping is done as follows:

print("play file")
filethread.playFileStreamCall(file_ctx)

play the file for 10 secs
time.sleep(10)

let's seek to seekpoint 2 seconds
print("seeking")
file_ctx.seektime_=2000
filethread.seekFileStreamCall(file_ctx)

pause for 3 secs
print("pausing")
filethread.stopFileStreamCall(file_ctx)
time.sleep(3)

continue playing for 5 secs
print("play again")
filethread.playFileStreamCall(file_ctx)
time.sleep(5)

Finally, exit:

5.3. Lessons 47

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

glthread.delRenderContextCall(context_id)
glthread.delRenderGroupCall(window_id)

exit
avthread .stopCall()
filethread.stopCall()
glthread .stopCall()

print("bye")

5.3.7 Lesson 7 : Decode, save, visualize, analyze and re-transmit

Download lesson [here]

In this example, we do simultaneously a lot of stuff, namely, save the stream to disk, decode it to bitmap, visualize it
in two different x windows, pass the decoded frames to an OpenCV analyzer and re-transmit the stream to a multicast
address.

Only a single connection to the IP camera is required and the stream is decoded only once.

The filtergraph looks like this:

main branch
(LiveThread:livethread) --> {ForkFrameFilter3: fork_filter}

|
branch 1 <---+

|
branch 2 <---+

|
branch 3 <---+

branch 1 : recast
-->> (LiveThread:livethread2_1)

branch 2 : save to disk
--> (FileFrameFilter:file_filter_2)

branch 3 : decode
-->> {AVThread:avthread_3} ------------+

|
{ForkFrameFilter: fork_filter_3} <---+

|
branch 3.1 +--->> (OpenGLThread:glthread_3_1) --> to two x-windows

|
branch 3.2 +----> {IntervalFrameFilter: interval_filter_3_2} -->

→˓{SwScaleFrameFilter: sws_filter_3_2} --> {RGBSharedMemFrameFilter: shmem_filter_3_2}

There is a new naming convention: the names of filters, threads and fifos are tagged with “_branch_sub-branch”.

Programming the filtergraph tree is started as usual, from the outer leaves, moving towards the main branch:

*** branch 1 ***
livethread2_1 =LiveThread("livethread2_1")
live2_in_filter =livethread2_1.getFrameFilter()

*** branch 2 ***
file_filter_2 =FileFrameFilter("file_filter_2")

(continues on next page)

48 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

*** branch 3.1 ***
glthread_3_1 =OpenGLThread("glthread")
gl_in_filter_3_1 =glthread_3_1.getFrameFilter()

*** branch 3.2 ***
image_interval=1000 # YUV => RGB interpolation to the small size is done each 1000
→˓milliseconds and passed on to the shmem ringbuffer
width =1920//4 # CPU YUV => RGB interpolation
height =1080//4 # CPU YUV => RGB interpolation
shmem_name ="lesson_4" # This identifies posix shared memory - must be unique
shmem_buffers =10 # Size of the shmem ringbuffer

shmem_filter_3_2 =RGBShmemFrameFilter(shmem_name, shmem_buffers, width, height)
sws_filter_3_2 =SwScaleFrameFilter("sws_filter", width, height, shmem_filter_3_2)
interval_filter_3_2 =TimeIntervalFrameFilter("interval_filter", image_interval, sws_
→˓filter_3_2)

*** branch 3 ***
fork_filter_3 =ForkFrameFilter("fork_3",gl_in_filter_3_1,interval_filter_3_2)
avthread_3 =AVThread("avthread_3",fork_filter_3)
av3_in_filter =avthread_3.getFrameFilter()

*** main branch ***
livethread =LiveThread("livethread_1")
fork_filter =ForkFrameFilter3("fork_filter",live2_in_filter,file_filter_2,av3_in_
→˓filter)

The full code can be downloaded from [here].

The OpenCV client program for reading shared memory can be found from [lesson 4].

Testing the shared multicast stream was explained in [lesson 5].

5.3.8 Lesson 8: API level 2

General aspects

API level 2 tutorial codes are available at:

cd valkka_examples/api_level_2/tutorial
python3 lesson_8_a.py

So, by now you have learned how to construct complex filtergraphs with framefilters and threads, and how to encap-
sulate parts of the filtergraphs into separate classes in lesson 3.

API level 2 does just that. It encapsulates some common cases into compact classes, starts the decoding threads for
you, and provides easily accessible end-points (for the posix shared memory interface, etc.) for the API user.

The API level 2 filterchains, threads and shared memory processes can be imported with

from valkka.api2 import ...

API level 2 provides also extra wrapping for the thread classes (LiveThread, OpenGLThread, etc.). The underlying
API level 1 instances can be accessed like this:

5.3. Lessons 49

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

from valkka.api2 import LiveThread

livethread=LiveThread("live_thread")
livethread.core # this is the API level 1 instance, i.e. valkka.valkka_core.LiveThread

Keep in mind never to do a full import simultaneously from API levels one and two, i.e.

NEVER DO THIS!
from valkka.valkka_core import *
from valkka.api2 import *

as the threads (LiveThread, OpenGLThread, etc.) have indentical names.

The PyQT testsuite serves also as API level 2 reference.

A simple example

Download lesson [here]

First, import API level 2:

import time
from valkka.api2 import LiveThread, OpenGLThread
from valkka.api2 import BasicFilterchain

Instantiating the API level 2 LiveThread starts running the underlying cpp thread:

livethread=LiveThread(# starts live stream services (using live555)
name ="live_thread",
verbose=False,
affinity=-1

)

Same goes for OpenGLThread:

openglthread=OpenGLThread(
name ="glthread",
n_720p =20, # reserve stacks of YUV video frames for various resolutions
n_1080p =20,
n_1440p =0,
n_4K =0,
verbose =False,
msbuftime=100,
affinity=-1

)

The filterchain and decoder (AVThread) are encapsulated into a single class. Instantiating starts the AVThread (decod-
ing is off by default):

chain=BasicFilterchain(# decoding and branching the stream happens here
livethread =livethread,
openglthread=openglthread,
address ="rtsp://admin:nordic12345@192.168.1.41",
slot =1,
affinity =-1,
verbose =False,

(continues on next page)

50 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

msreconnect =10000 # if no frames in ten seconds, try to reconnect
)

BasicFilterchain takes as an argument the LiveThread and OpenGLThread instances. It creates the relevant connections
between the threads.

Next, create an x-window, map stream to the screen, and start decoding:

create a window
win_id =openglthread.createWindow()

create a stream-to-window mapping
token =openglthread.connect(slot=1,window_id=win_id) # present frames with slot
→˓number 1 at window win_id

start decoding
chain.decodingOn()
stream for 20 secs
time.sleep(20)

Close threads in beginning-to-end order

livethread.close()
chain.close()
openglthread.close()
print("bye")

5.3.9 Lesson 9 : Drawing Bounding Boxes

Here we stream video to a single X-window just like in tutorial example 3, but we also draw some bounding boxes on
the video.

Download lesson [here]

First, business as usual (and like in tutorial example 3)

import time
from valkka.core import *
glthread =OpenGLThread ("glthread")
gl_in_filter =glthread.getFrameFilter()

avthread =AVThread("avthread",gl_in_filter)
av_in_filter =avthread.getFrameFilter()

livethread =LiveThread("livethread")

ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:nordic12345@192.168.
→˓1.41", 1, av_in_filter)

glthread.startCall()
avthread.startCall()
livethread.startCall()

avthread.decodingOnCall()

livethread.registerStreamCall(ctx)

(continues on next page)

5.3. Lessons 51

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

livethread.playStreamCall(ctx)

window_id =glthread.createWindow()

glthread.newRenderGroupCall(window_id)

context_id=glthread.newRenderContextCall(1,window_id,0) # slot, render group, z

time.sleep(1)

Let’s add a bounding box, overlaying the video. Parameteres for bounding box (left, bottom) -> (right, top) are given
in the order left, right, top, bottom.

Coordinates are relative coordinates from 0 to 1.

bbox=(0.25, 0.75, 0.75, 0.25) # left, right, top, bottom

glthread.addRectangleCall(context_id, bbox[0], bbox[1], bbox[2], bbox[3])

You could add more bounding boxes with consecutive calls to glthread.addRectangleCall

Let’s play video for 10 seconds

time.sleep(10)

Finally, clear the bounding boxes and exit

glthread.clearObjectsCall(context_id)

glthread.delRenderContextCall(context_id)
glthread.delRenderGroupCall(window_id)

avthread.decodingOffCall()

livethread.stopCall()
avthread.stopCall()
glthread.stopCall()

print("bye")

5.3.10 Lesson 10 : USB Cameras

Valkka has experimental support for H264 streaming USB Cameras. To see if your camera supports H264 streaming,
use the following command:

v4l2-ctl --list-formats -d /dev/video2

Information about your cameras can be found also under this directory structure:

/sys/class/video4linux/

The only difference to handling IP cameras is that a different thread (USBDeviceThread) is used to stream the video.

Download lesson [here]

52 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

import time
from valkka.core import *
glthread =OpenGLThread ("glthread")
gl_in_filter =glthread.getFrameFilter()

avthread =AVThread("avthread",gl_in_filter)
av_in_filter =avthread.getFrameFilter()

USBDeviceThread reads and multiplexes all USB cameras

usbthread =USBDeviceThread("usbthread")

Define the usb camera (/dev/video2) and where it is going to be streamed (to av_in_filter with slot number 1):

ctx = USBCameraConnectionContext("/dev/video2", 1, av_in_filter)
The default resolution is 720p
If you want to set the width and height yourself, uncomment the following line
ctx.width = 1920; ctx.height = 1080;

glthread.startCall()
avthread.startCall()
usbthread.startCall()

avthread.decodingOnCall()

window_id =glthread.createWindow()

glthread.newRenderGroupCall(window_id)

context_id=glthread.newRenderContextCall(1,window_id,0) # slot, render group, z

time.sleep(1)

usbthread.playCameraStreamCall(ctx);

Stream for a minute. Patience. At least the HD Pro Webcam C920 does not send keyframes too often ..

time.sleep(60)

usbthread.stopCameraStreamCall(ctx);

glthread.delRenderContextCall(context_id)
glthread.delRenderGroupCall(window_id)

avthread.decodingOffCall()

usbthread.stopCall()
avthread.stopCall()
glthread.stopCall()

print("bye")

5.3.11 Lesson 11 : ValkkaFS

As you learned from earlier lessons, you can redirect video streams to matroska (.mkv) video files.

Here we’ll be streaming video to the custom ValkkaFS filesystem.

5.3. Lessons 53

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

ValkkaFS dumps video to a dedicated file, or to an entire partition or disk. Arriving H264 frames are written in their
arriving time order, into the same (large) file that is organized in blocks. For more details, consult the ValkkaFS section
and the cpp documentation.

Here we provide several examples for writing to and reading from ValkkaFS. These include importing video from
ValkkaFS to matroska, and caching frames from ValkkaFS and passing them downstream at play speed.

In a typical VMS application, writing and reading run concurrently: writing thread dumps frames continuously to the
disk, while reading thread is evoked only at user’s request.

Writing

Let’s start by dumping video from IP cameras into ValkkaFS.

Download lesson [here]

This will be our filtergraph:

(LiveThread:livethread) -->> (ValkkaFSWriterThread:writerthread)

Let’s import valkka level 1 API, and ValkkaSingleFS from level 2 API:

import time
from valkka.core import *
from valkka.fs import ValkkaSingleFS
from valkka.api2 import loglevel_debug, loglevel_normal, loglevel_crazy

Let’s set our IP camera’s address:

rtsp_address="rtsp://admin:12345@192.168.0.157"

If you want to see the filesystem writing each frame, enable these debugging loggers:

#setLogLevel_filelogger(loglevel_crazy)
#setLogLevel_valkkafslogger(loglevel_crazy)

There are two flavors of ValkkaFS under the valkka.fs namespace, namely ValkkaSingleFS and
ValkkaMultiFS. In the former, there is one file per one camera/stream, while in the latter you can dump several
streams into the same file.

The ValkkaSingleFS instance handles the metadata of the filesystem. Let’s create a new filesystem and save the
metadata into directory /tmp/testvalkkafs

valkkafs = ValkkaSingleFS.newFromDirectory(
dirname = "/tmp/testvalkkafs",
blocksize = (2048//8)*1024, # note division by 8: 2048 KiloBITS
n_blocks = 10,
verbose = True)

Here one block holds 2048 KBits (256 KBytes) of data. Let suppose that your camera streams 1024KBits per second
(kbps): now a block will be finished every 2 seconds.

If you now set your IP camera to key-frame every one second, you will have two key frames per each block, which is
a necessary condition for efficient seeking using the filesystem.

The total size of the device file where frames are streamed, will be (256kB * 10) 2560 kB.

You could also skip the parameter n_blocks and instead define the device file size directly with device_size =
2560*1024.

54 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Now the directory has the following files:

blockfile Table of block timestamps. Used for seeking, etc.
dumpfile Frames are streamed into this file (the "device file")
valkkafs.json Metadata: block size, current block, etc.

Next, we create and start (1) the thread responsible for writing the frames into ValkkaFS and (2) LiveThread that is
reading the cameras:

writerthread = ValkkaFSWriterThread("writer", valkkafs.core)
livethread = LiveThread("livethread")

All cameras write to the same FrameFilter, handled by the writing thread:

file_input_framefilter = writerthread.getFrameFilter()

Read camera and designate it with slot number 1

ctx = LiveConnectionContext(LiveConnectionType_rtsp, rtsp_address, 1, file_input_
→˓framefilter)

Next, start threads

writerthread.startCall()
livethread.startCall()

Frames with slot number 1 are identified in the filesystem with id number 925412 (which we just invented):

writerthread.setSlotIdCall(1, 925412)

livethread.registerStreamCall(ctx)
livethread.playStreamCall(ctx)

Idle for some secs while the threads run in the background

print("recording!")
time.sleep(3)

At this moment, let’s take a look at the blocktable

a=valkkafs.getBlockTable()
print(a)
if a.max() <= 0:

print("Not a single block finished so far..")
valkkafs.core.updateTable(disk_write=True)
print("Check blocktable again")
a=valkkafs.getBlockTable()
if a.max() <= 0:

print("Not a single frame so far..")
print(a)

Frames in a certain block are saved definitely into the book-keeping only once a block is finished.

In the code above, we force a block write even if the block has not filled up.

Let’s continue & let the threads do their stuff for some more time

5.3. Lessons 55

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

print("recording some more")
time.sleep(30)

livethread.stopCall()
writerthread.stopCall()

Let’s take a look at the blocktable again:

print(a)

print("bye")

Reading 1

In these following two examples, we request frames from ValkkaFS

Download lesson [here]

Same imports as before:

import time, sys
from valkka.core import *
from valkka.fs import ValkkaSingleFS

Load ValkkaFS metadata:

valkkafs = ValkkaSingleFS.loadFromDirectory(dirname="/tmp/testvalkkafs")

Let’s take a look at the blocktable:

a = valkkafs.getBlockTable()
print(a)

Construct the filterchain: write from the reader thread into the verbose InfoFrameFilter

out_filter =InfoFrameFilter("reader_out_filter")
readerthread = ValkkaFSReaderThread("reader", valkkafs.core, out_filter)

Start the reader thread:

readerthread.startCall()

Frames with id number 925412 are mapped into slot 1:

readerthread.setSlotIdCall(1, 925412)

Request blocks 0, 1 from the reader thread. Information of frames from these blocks are dumped on the terminal

readerthread.pullBlocksPyCall([0,1])
time.sleep(1)

Exit the thread:

readerthread.stopCall()
print("bye")

56 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Reading 2

Download lesson [here]

import time, sys
from valkka.core import *
from valkka.fs import ValkkaSingleFS

Load ValkkaFS metadata:

valkkafs = ValkkaSingleFS.loadFromDirectory(dirname="/tmp/testvalkkafs")

Let’s take a look at the blocktable:

a = valkkafs.getBlockTable()
print(a)

Instantiate ValkkaFSTool that allows us to peek into the written data

tool = ValkkaFSTool(valkkafs.core)

Contents of individual blocks can now be inspected like this:

tool.dumpBlock(0)
tool.dumpBlock(1)

You’ll get output like this:

----- Block number : 0 -----
[925412] <BasicFrame: timestamp=1543314164986 subsession_index=0 slot=0 / payload
→˓size=29 / H264: slice_type=7> * 0 0 0 1 103 100 0 31 172 17 22 160 80 5 186 16
→˓0 1 25 64
[925412] <BasicFrame: timestamp=1543314164986 subsession_index=0 slot=0 / payload
→˓size=8 / H264: slice_type=8> 0 0 0 1 104 238 56 176
[925412] <BasicFrame: timestamp=1543314165135 subsession_index=0 slot=0 / payload
→˓size=32 / H264: slice_type=7> * 0 0 0 1 103 100 0 31 172 17 22 160 80 5 186 16
→˓0 1 25 64
[925412] <BasicFrame: timestamp=1543314165135 subsession_index=0 slot=0 / payload
→˓size=8 / H264: slice_type=8> 0 0 0 1 104 238 56 176
[925412] <BasicFrame: timestamp=1543314165135 subsession_index=0 slot=0 / payload
→˓size=19460 / H264: slice_type=5> 0 0 0 1 101 136 128 8 0 1 191 180 142 114 29
→˓255 192 79 52 19
[925412] <BasicFrame: timestamp=1543314165215 subsession_index=0 slot=0 / payload
→˓size=32 / H264: slice_type=7> * 0 0 0 1 103 100 0 31 172 17 22 160 80 5 186 16
→˓0 1 25 64
[925412] <BasicFrame: timestamp=1543314165215 subsession_index=0 slot=0 / payload
→˓size=8 / H264: slice_type=8> 0 0 0 1 104 238 56 176
[925412] <BasicFrame: timestamp=1543314165215 subsession_index=0 slot=0 / payload
→˓size=19408 / H264: slice_type=5> 0 0 0 1 101 136 128 8 0 1 191 180 142 114 29
→˓255 193 80 200 71
[925412] <BasicFrame: timestamp=1543314165335 subsession_index=0 slot=0 / payload
→˓size=4928 / H264: slice_type=1> 0 0 0 1 65 154 0 64 2 19 127 208 117 223 181 129
→˓22 206 32 84
...

Frame id number is indicated in the first column. Asterix (*) marks the seek points. In the final rows, first few bytes
of the actual payload are shown.

Let’s see the min and max time of frames written in this ValkkaFS

5.3. Lessons 57

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(t0, t1) = valkkafs.getTimeRange()
print("Min and Max time in milliseconds:", t0, t1)

These are milliseconds, so to get struct_time object we need to do this:

print("Min time:", time.gmtime(t0/1000))
print("Max time:", time.gmtime(t1/1000))

Block numbers corresponding to a certain time range can be searched like this:

req = (t0, t1)
block_indices = valkkafs.getInd(req)
print("Block indices =", block_indices)

Now you could pass to indices to the ValkkaFSReaderThread method pullBlocksPyCall to recover all frames from
that time interval.

Another usefull method is getIndNeigh. It returns blocks from the neighborhood of a certain target time:

req = (t1+t0)//2
block_indices = valkkafs.getIndNeigh(n=2, time=req)
print("Block indices =", block_indices)

That will return the target block plus two blocks surrounding it.

You would call this method when a user requests a seek to a certain time and you want to be sure that there are enough
frames surrounding that time instant

Matroska export

Let’s start by recalling the very first lesson. There we saw how LiveThread sends Setup Frames at streaming initial-
ization. Setup frames are used all over the libValkka infrastructure, to carry information about the video stream, to
signal the stream start and to initialize decoders, muxers, etc.

On the other hand, ValkkaFSReaderThread is designed to be a simple beast: it does not have any notion of stream
initialization. It simply provides frames on a per-block basis.

We must use a special FrameFilter called InitStreamFrameFilter, in order to add the Setup Frames into the stream.

Download lesson [here]

Same imports as before:

import time, sys
from valkka.core import *
from valkka.api2 import loglevel_debug, loglevel_normal
from valkka.fs import ValkkaSingleFS

setLogLevel_filelogger(loglevel_debug)

Load ValkkaFS metadata:

valkkafs = ValkkaSingleFS.loadFromDirectory(dirname="/tmp/testvalkkafs")

Let’s take a look at the blocktable:

a = valkkafs.getBlockTable()
print(a)

58 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Next, construct the filterchain. It looks like this:

+--> ...
main branch |
(ValkkaFSWriterThread:readerthread) --> {ForkFrameFilterN:fork_filter} ---+

|
+--> branch

→˓1

branch 1 : {PassSlotFrameFilter:slot_filter} --> {InitStreamFrameFilter:init_stream} -
→˓-> {FileFrameFilter:file_filter} --> output file

Here we have introduced yet another FrameFilter that performs forking. An arbitrary number of terminals can be
connected to ForkFrameFilterN. Terminals can be connected and disconnected also while threads are running.

The PassSlotFrameFilter passes frames with a certain slot number as we want frames only from a single stream to the
final output file.

main branch
fork_filter = ForkFrameFilterN("fork")
readerthread = ValkkaFSReaderThread("reader", valkkafs.core, fork_filter)

branch 1
file_filter = FileFrameFilter("file_filter")
init_stream = InitStreamFrameFilter("init_filter", file_filter)
slot_filter = PassSlotFrameFilter("", 1, init_stream)

connect branch 1
fork_filter.connect("info", slot_filter)

activate file write
file_filter.activate("kokkelis.mkv")

Start the reader thread:

readerthread.startCall()

Frames with id number 925412 are mapped into slot 1:

readerthread.setSlotIdCall(1, 925412)

Request blocks 0-4 from the reader thread. Information of frames from these blocks are dumped on the terminal

readerthread.pullBlocksPyCall([0,1,3,4])
time.sleep(1)

Exit the thread:

readerthread.stopCall()
print("bye")

Playing frames

As you learned in the previous examples of this section, ValkkaFSReader pushes frames downstream in “bursts”,
several blocks worth of frames in a single shot.

However, we also need something that passes recorded frames downstream (say, for visualization and/or for transmis-
sion) at “play speed” (say, at that 25 fps).

5.3. Lessons 59

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

This is achieved with FrameCacherThread, which caches, seeks and passes frames downstream at play speed.

In detail, ValkkaFSReaderThread passes frames to FrameCacherThread which caches them into memory. After this,
seek, play and stop can be requested from FrameCacherThread, which then passes the frames downstream from a seek
point and at the original play speed at which the frames were recorded into ValkkaFS.

FrameCacherThread can be given special python callback functions that are being called when the min and max time
of cached frames changes and when frame presentation time goes forward.

FrameCacherThread is very similar to other threads that send stream (like LiveThread), so it also handles the sending
of Setup Frames downstream correctly.

Download lesson [here]

Same imports as before:

import time, sys
from valkka.core import *
from valkka.api2 import loglevel_debug, loglevel_normal
from valkka.fs import ValkkaSingleFS

setLogLevel_filelogger(loglevel_debug)

Load ValkkaFS metadata:

valkkafs = ValkkaSingleFS.loadFromDirectory(dirname="/tmp/testvalkkafs")

Let’s take a look at the blocktable:

a = valkkafs.getBlockTable()
print(a)

Filterchain is going to look like this:

(ValkkaFSReaderThread:readerthread) -->> (FileCacheThread:cacherthread) -->
→˓{InfoFrameFilter:out_filter}

|
$

setPyCallback : [int] current mstime, freq: 500 ms
setPyCallback2 : [tuple] (min mstimestamp, max

→˓mstimestamp)

As you can see, where have introduced new notation here.

$ designates callbacks that are used by FileCacheThread. It’s up to you to define the python code in these callbacks.
The callbacks are registered by using the setPyCallback and setPyCallback2 methods.

Next, we proceed in constructing the filterchain in end-to-beginning order.

ValkkaFSReaderThread will write all it’s frames into FileCacheThread’s input FrameFilter.

out_filter = InfoFrameFilter("out_filter") # will be registered later with
→˓cacherthread
cacherthread = FileCacheThread("cacher")
readerthread = ValkkaFSReaderThread("reader", valkkafs.core, cacherthread.
→˓getFrameFilter()) # ValkkaFSReaderThread => FileCacheThread

Next, define callbacks for FileCacheThread

Define a global variable: a tuple that holds the min and max millisecond timestamps of cached frames:

60 Chapter 5. Tutorial

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

current_time_limits = None

This following function will be called frequently by FileCacheThread to inform us about the current millisecond
timestamp:

def current_time_callback(mstime: int):
global current_time_limits
try:

print("current time", mstime)
if current_time_limits is None:

return

if mstime >= current_time_limits[1]:
print("current time over cached time limits!")
cacherthread.rewindCall() # TODO
or alternatively, handle the situation as you please
.. for example, request more blocks:
readerthread.pullBlocksPyCall(your_list_of_blocks)
pass

except Exception as e:
print("current_time_callback failed with ", str(e))
return

The next callback is evoked when FileCacheThread receives new frames for caching. It informs us about the minimum
and maximum millisecond timestamps:

def time_limits_callback(times: tuple):
global current_time_limits
try:

print("new time limits", times)
current_time_limits = times

except Exception as e:
print("time_limits_callback failed with ", str(e))
return

The callbacks should be kept ASAP (as-simple-as-possible) and return immediately. You also might wan’t them to
send a Qt signal in your GUI application.

Typically, they should use only the following methods of the libValkka API:

valkka.fs.ValkkaSingleFS
.getBlockTable
.getTimeRange

valkka.core.ValkkaFSReaderThread
.pullBlocksPyCall

Register the callbacks into the FileCacheThread

cacherthread.setPyCallback(current_time_callback)
cacherthread.setPyCallback2(time_limits_callback)

Start the threads

cacherthread.startCall()
readerthread.startCall()

5.3. Lessons 61

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Frames saved with id number 925412 to ValkkaFS are mapped into slot number 1:

readerthread.setSlotIdCall(1, 925412)

FileCacheThread will write frames with slot number 1 into InfoFrameFilter:

ctx = FileStreamContext(1, out_filter)
cacherthread.registerStreamCall(ctx)

Request blocks 0-4 from the reader thread. The frames will be cached by FileCacheThread.

readerthread.pullBlocksPyCall([0,1,3,4])

Before frames can be played, a seek must be performed to set a time reference.

mstimestamp = int(a[1,0]) # take the first timestamp from the blocktable. Use int()
→˓to convert to normal python integer.
print("seeking to", mstimestamp)
cacherthread.seekStreamsCall(mstimestamp)

It’s up to the API user to assure that the used mstimestamp is within the correct limits (i.e. requested blocks).

Next, let the stream play for 10 seconds

cacherthread.playStreamsCall()
time.sleep(10)

Stop threads

cacherthread.stopCall()
readerthread.stopCall()

print("bye")

ValkkaFSManager

In the previous example, two callback functions which define the application’s behaviour with respect to recorded and
cached frames were used.

How you define the callback functions, depends completely on your application, say, if you’re creating an application
that does playback of recorded stream, you might want to request new blocks at your current_time_callback, once the
time goes over limits of currently cached frames.

We are starting to get some idea on the challenges that arise when doing simultaneous reading, writing, caching and
playing of a large number of (non-continuous) video streams. For a more discussions on this, please see the ValkkaFS
section.

To make things easier, valkka.fs namespace has a special class ValkkaFSManager that handles the simultane-
ous & synchronous writing and playing of multiple video streams.

For an example on how to use ValkkaFSManager, please see test_studio_6.py at the PyQt testsuite.

62 Chapter 5. Tutorial

CHAPTER 6

Decoding

6.1 Single thread

By default, libValkka uses only a single core per decoder (the decoding threads can also be bound to a certain core -
see the testsuite for more details).

This is a good idea if you have a large number of light streams. What is exactly a light stream depends on your linux
box, but let’s assume here that it is a 1080p video running approx. at 20 frames per second.

6.2 Multithread

If you need to use a single heavy stream, then you might want to dedicate several cores in decoding a single stream. A
heavy stream could be example that 4000x3000 4K camera of yours running at 60 frames per second (!)

However, before using such a beast, you must ask yourself, do you really need something like that?

The biggest screen you’ll ever be viewing the video from, is probably 1080p, while a framerate of 15 fps is good for
the human eye. Modern convoluted neural networks (yolo, for example), are using typically a resolution of ~ 600x600
pixels and analyzing max. 30 frames per seconds. And we still haven’t talked about clogging up your LAN.

If you really, really have to use several threads per decoder, modify tutorial’s lesson 2 like this:

avthread = AVThread("avthread",info_filter)
avthread.setNumberOfThreads(4)

That will dedicate four cores to the decoder. Remember to call setNumberOfThreads before starting the AVThread
instance.

63

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

6.3 GPU Accelerated

Hardware (hw) accelerated decoders are available in libValkka. For more details, please see here. However, before
using them, you should ask yourself if you really need them. Maybe it is better to save all GPU muscle for deep
learning inference instead?

Video hw acceleration libraries are typically closed-source implementations, and the underlying “black-box” can be
poorly implemented and suffer from memory leaks. Read for example this thread. Slowly accumulating memleaks
are poison for live video streaming applications which are supposed to stream continuously for days, weeks and even
forever.

Sometimes the proprietary libraries may also restrict how many simultaneous hw video decoders you can have, while
there are no such restrictions on CPU decoding.

So, if you have a linux box, dedicated solely for streaming and with decent CPU(s), don’t be over-obsessed with hw
decoding.

6.4 Queueing frames

Typically, when decoding H264 video, handling the intra-frame takes much more time than decoding the consecutive
B- and P-frames. This is very pronounced for heavy streams (see above).

Because of that the intra frame will arrive late for the presentation, while the consecutive frames arrive in a burst.

This problem can be solved with buffering. Modify tutorial’s lesson 3 like this:

from valkka.core import *

glthread = OpenGLThread ("glthread")

gl_ctx = core.OpenGLFrameFifoContext()
gl_ctx.n_720p = 0
gl_ctx.n_1080p = 0
gl_ctx.n_1440p = 0
gl_ctx.n_4K = 40

glthread = OpenGLThread("glthread", gl_ctx, 500)

That will reserve 40 4K frames for queueing and presentation of video, while the buffering time is 500 milliseconds.

For level 2 API, it would look like this:

from valkka.api2 import *

glthread = OpenGLThread(
name ="glthread",
n_720p = 0,
n_1080p = 0,
n_1440p = 0,
n_4K = 40,
msbuftime = 500

)

Remember also that for certain class of frames (720p, 1080p, etc.):

number of pre-reserved frames >= total framerate x buffering time

64 Chapter 6. Decoding

https://ffmpeg.org/pipermail/ffmpeg-user/2017-May/036232.html

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

For testing, you should use the test_studio_1.py program. See also this lesson of the tutorial.

Buffering solves many other issues as well. If you don’t get any image and the terminal screaming that “there are no
more frames”, then just enhance the buffering.

6.4. Queueing frames 65

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

66 Chapter 6. Decoding

CHAPTER 7

Integrating with Qt and multiprocessing

7.1 Qt integration

Valkka can be used with any GUI framework, say, with GTK or Qt. Here we have an emphasis on Qt, but the general
guidelines discussed here, apply to any other GUI framework as well. Concrete examples are provided only for Qt.

At the GUI’s main window constructor:

1. Start your python multiprocesses if you have them (typically used for machine vision analysis)

2. Instantiate filtergraphs (from dedicated filtergraph classes, like we did in tutorial)

3. Start all libValkka threads (LiveThread, OpenGLThread, etc.)

4. Start a QThread listening to your python multiprocesses (1), in order to translate messages from multiprocesses
to Qt signals.

Finally:

5. Start your GUI framework’s execution loop

6. At main window close event, close all threads, filterchains and multiprocesses

Examples of all this can be found in the PyQt testsuite together with several filtergraph classes.

7.2 Drawing video into a widget

X-windows, i.e. “widgets” in the Qt slang, can be created at the Qt side and passed to Valkka. Alternatively, x-windows
can be created at the Valkka side and passed to Qt as “foreign widgets”.

As you learned in the tutorial, we use the X-window window ids like this:

context_id=glthread.newRenderContextCall(1,window_id,0)

67

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

That creates a mapping: all frames with slot number “1” are directed to an X-window with a window id “window_id”
(the last number “0” is the z-stacking and is not currently used).

We can use the window id of an existing Qt widget “some_widget” like this:

window_id=int(some_widget.winId())

There is a stripped-down example of this in

valkka_examples/api_level_1/qt/

single_stream_rtsp.py

You can also let Valkka create the X-window (with correct visual parameters, no XSignals, etc.) and embed that
X-window into Qt. This can be done with:

foreign_window =QtGui.QWindow.fromWinId(win_id)
foreign_widget =QtWidgets.QWidget.createWindowContainer(foreign_window,parent=parent)

where “win_id” is the window_id returned by Valkka, “parent” is the parent widget of the widget we’re creating here
and “foreign_widget” is the resulting widget we’re going to use in Qt.

However, “foreign_widget” created this way does not catch mouse gestures. This can be solved by placing a “dummy”
QWidget on top of the “foreign_widget” (using a layout). An example of this can be found in

7.3 Python multiprocessing

In lesson 4 of the tutorial, we launched a separate python interpreter running a client program that was using decoded
and shared frames.

That approach works for Qt programs as well, but it is more convenient to use multiprocesses constructed with
Python3’s multiprocessing library.

Using python multiprocesses with Qt complicates things a bit: we need a way to map messages from the multiprocess
into signals at the main Qt program. This can be done by communicating with the python multiprocess via pipes and
converting the pipe messages into incoming and outgoing Qt signals.

Let’s state that graphically:

Qt main loop running with signals and slots
|
+--- QThread receiving/sending signals --- writing/reading communication pipes

|
+-------------+------+---------

→˓-------+
| |

→˓ |
multiprocess_1 multiprocess_2

→˓ multiprocess_3

python multiprocesses doing
→˓their thing

and writing/reading their
→˓communication pipes

==> subclass from valkka.
→˓multiprocess.MessageProcess

68 Chapter 7. Integrating with Qt and multiprocessing

https://docs.python.org/3/library/multiprocessing.html

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Note that we only need a single QThread to control several multiprocesses.

Let’s dig deeper into our strategy for interprocess communication with the Qt signal/slot system:

+--------------------------------------+
| |
| QThread |
| watching the communication pipe |
| +----- reads "ping"|
| | | |
+-------------------|------------------+

| |
+------------------|-------+ | ...
| Frontend methods | | ^ :
| | | pipe :
| def ping(): <---+ | | :
| do something | | :
| (say, send a qt signal)| | :
| | | :
| def pong(): # qt slot | | :
| sendSignal("pong") ---------+ | :
| | | | : valkka.multiprocess.MessageProcess
+--------------------------+ | | :
| Backend methods | | | : Backend is running in the
→˓"background" in its own virtual memory space
| | | | :
| sendSignal__("ping") ------->----+ :
| | | :
| watching childpipe <------- childpipe :
| | | :
| def pong__(): <-+ | :
| do something | :
| | :
+--------------------------+ ..:

The class valkka.multiprocess.MessageProcess provides a model class that has been derived from python’s multi-
processing.Process class. In MessageProcess, the class has both “frontend” and “backend” methods.

The MessageProcess class comes with the main libValkka package, but you can also install it separately.

It is documented in detail in valkka-multiprocess package documentation.

We highly recommend that you read that documentation as it is important to understand what you are doing here -
what is running in the “background” and what in your main python (Qt) process as including libValkka threads and
QThreads into the same mix can easily result in the classical “fork-combined-with-threading” pitfall, leading to a
leaky-crashy program.

Please refer also to the PyQt testsuite how to do things correctly.

A stand-alone python multiprocessing/Qt sample program is provided here (without any libValkka components):

valkka_examples/api_level_2/qt/

multiprocessing_demo.py

Try it to see the magic of python multiprocessing connected with the Qt signal/slot system.

Finally, for creating a libValkka Qt application having a frontend QThread, that controls OpenCV process(es), take a
look at

7.3. Python multiprocessing 69

https://elsampsa.github.io/valkka-multiprocess/_build/html/index.html

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

valkka_examples/api_level_2/qt/

test_studio_detector.py

And follow the code therein. You will find these classes:

• MovementDetectorProcess : multiprocess with Qt signals and OpenCV

• QHandlerThread : the frontend QThread

A more full-blown multiprocess orchestration example can be found as in this python package.

7.4 C++ API

There is no obligation to use Valkka from python - the API is usable from cpp as well: all python libValkka threads
and filters are just swig-wrapped cpp code.

If programming in Qt with C++ is your thing, then you can just forget all that multiprocessing considered here and use
cpp threads instead.

Say, you can use Valkka’s FrameFifo and Thread infrastructure to create threads that read frames and feed them to an
OpenCV analyzer (written in cpp).

You can also communicate from your custom cpp thread to the python side. A python program using an example cpp
thread (TestThread) which communicates with PyQt signals and slots can be found here:

valkka_examples/api_level_2/qt/

cpp_thread_demo.py

See also the documentation for the cpp source code of TestThread

70 Chapter 7. Integrating with Qt and multiprocessing

https://github.com/elsampsa/valkka-examples/tree/master/example_projects/basic
https://elsampsa.github.io/valkka-core/html/classTestThread.html

CHAPTER 8

Multi-GPU systems

(If you just have monitors connected to a single graphics card, no need to be here)

8.1 Introduction

Consider the following setup:

• You have 2 graphic cards (GPUs)

• Each card is connected to 4 monitors

• You want to build a video wall with 8 monitors

The two graphic cards are physically separate entities with their own resources, so it actually makes sense to keep
them that way in the software side as well.

For creating such a separation, Linux offers a robust, well-tested and ancient (!) solution: multiple X-Screens.

Let’s state the example case graphically:

+----> monitor 1-1 |
| | X-Screen 0

GPU1 --+----> monitor 1-2 | Spanning four monitors
| |
+----> monitor 1-3 |
| |
+----> monitor 1-4 |

+----> monitor 2-1 |
| | X-Screen 1

GPU2 --+----> monitor 2-2 | Spanning four monitors
| |
+----> monitor 2-3 |
| |
+----> monitor 2-4 |

71

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

The advantage of this setup is, that the different GPUs don’t have to communicate or cross-over data between them. In
OpenGL, they do not have to share contexes. The disadvantage is that one can’t move a program window from GPU1
to GPU2, just the mouse pointer.

On the contrary, if you form a “macro” desktop (with a single X-Screen), spanning all 8 monitors, prepare yourself
for performance bottlenecks. A nice demo is to run “glxgears” and observe what happens to the framerate when you
move the glxgears window from one GPU to another. For a deeper discussion on the subject, see for example this
page.

Unfortunately, many Linux desktop environments (KDE for example) have deprecated their ability to handle several
X-Screens: do check out this rather frustrating discussion thread / bug report on the subject.

8.2 Our approach

As you learned from the tutorials and from the PyQt testsuite, Valkka uses a dedicated thread (OpenGLThread) to
pre-reserve resources from the GPU and to communicate with it.

In a multi-gpu case, one simply launches an OpenGLThread for each GPU: OpenGLThread takes as a parameter a
string defining the connection to the X-server (e.g. “:0.0”, “:0.1”, .. “:0.n”, where n is the GPU number).

It is up to the API user to send the decoded frames to the correct OpenGLThread (and GPU). A simple example, where
all decoded frames are sent to all GPUs in the system can be found in

valkka_examples/api_level_2/qt/

test_studio_3.py

8.3 Configuration

We’ve been succesful in setting up multi-gpu systems with the following setup:

• Use identical Nvidia graphic cards

• Use the NVidia proprietary driver

• With the nvidia-settings applet, configure your system as follows:

– Do not use Xinerama

– Configure each graphic card as a separate X-screen

– Use “relative” not “absolute” positioning of the screens and monitors

• Use the Xcfe desktop/window manager instead of Kwin/KDE

– Can be installed with sudo apt-get install xubuntu-desktop

– Turn off window-manager composition: Settings Manager -> Window Manager Tweaks -> Compositor
-> uncheck Enable Display Compositor

• Use Pyside2 or PyQt5 version 5.11.2 or greater (you probably have to install with pip3 install)

Finally, test the configuration with the PyQt testsuite’s “test_studio_3.py”

72 Chapter 8. Multi-GPU systems

https://nouveau.freedesktop.org/wiki/MultiMonitorDesktop/
https://nouveau.freedesktop.org/wiki/MultiMonitorDesktop/
https://bugs.kde.org/show_bug.cgi?id=256242#c60

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

8.4 Note on $DISPLAY

The environmental variable DISPLAY defines the “display” (aka X-server) and “screen” (logical screen that can span
multiple monitors) with the following format

[host]:display[.screen]

where [] is something optional (see also in here).

8.4. Note on $DISPLAY 73

https://www.x.org/archive/X11R6.8.1/doc/X.7.html

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

74 Chapter 8. Multi-GPU systems

CHAPTER 9

ValkkaFS

9.1 VMS Architecture

When creating a video management system capable of recording and playing simultaneously a large number of
streams, here are some of the problems one encounters:

• Recorded video streams are playbacked in sync, i.e. their timestamps are matched together

• There can be large temporal chunks of video missing from any of the streams (i.e. the video stream is not
continuous)

• Video is recorded simultaneously while it is being played, to/from the same file

• Only a finite amount of frames can be stored/buffered into memory for playback

• Book-keeping of the key-frames and rewinding from these key-frames to target time instants as per user’s re-
quests

In order to solve this (surprisingly nasty) problem, we have developed several objects and thread classes. Here is an
overview of them:

• core.ValkkaFS2 book-keeping of the frames

• core.ValkkaFSReaderThread reads frames from a file

• core.ValkkaFSWriterThread writes frames to a file

• core.FileCacherThread caches frames into memory and passes them down the filterchain

• Both core.ValkkaFSReaderThread and core.ValkkaFSWriterThread read/manipulate the
book-keeping entity (core.ValkkaFS2) simultaneously

core.ValkkaFS2, core.ValkkaFSReaderThread and core.ValkkaFSWriterThread can be used for
simple dumping & reading streams to/from disk. Please see the tutorial.

For more complex solution, i.e. the mentioned simultaneous reading, writing & caching, the following filterchain (a)
is used:

75

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(core.ValkkaFSWriterThread) --> FILE --> (core.ValkkaFSReaderThread) --> (core.
→˓FileCacherThread)

slot-to-id id-to-slot |
|

(DecoderThread) <--------------+

Typically, when recorded frames are played, the following takes place:

• Blocks of frames are requested from core.ValkkaFSReaderThread. From there they flow to core.
FileCacherThread

• When play is requested from core.FileCacherThread it passes frames to the decoder at play speed

To make matter simpler for the API user the filterchain in (a) is further encapsulated into an fs.FSGroup object.

Several FSGroup objects are further encapsulated into a fs.ValkkaFSManager object, the final hierarchical
object encapsulation looking like this:

fs.ValkkaFSManager
fs.FSGroup

fs.ValkkaSingleFS
core.ValkkaFS2

core.ValkkaFSWriterThread
core.ValkkaFSReaderThread
core.FileCacherThread

fs.FSGroup
fs.ValkkaSingleFS

core.ValkkaFS2
core.ValkkaFS2
core.ValkkaFSWriterThread
...

ValkkaFSManager being the “end-point”, from where a user can request synchronized playing and seeking for a
number of streams. ValkkaFSManager would be typically connected to a GUI component for interactive playback.

Please refer to the PyQt testsuite on how to use FSGroup and ValkkaFSManager.

9.2 Filesystem

ValkkaSingleFS is a simple filesystem for storing streaming media data. Video frames (H264) are organized in
“blocks” and written into a “dumpfile”. The dumpfile can be a regular file or a dedicated disk partition.

Dumpfile is pre-reserved, which makes the life easier for the underlying filesystem and avoids fragmentation (in
contrast to creating a huge amount of small, timestamped video segment files).

The size of a single block (S) and the number of blocks (N) are predefined by the user. The total disk space for a
recording is then N*S bytes.

Once the last block is written, writing is “wrapped” and resumed from block number 1. This way the oldest recorded
stream is overwritten automatically.

Per each ValkkaFS, a directory is created with the following files:

directory/
blockfile # book-keeping of the frames
dumpfile # recorded H264 stream
valkkafs.json # metadata

76 Chapter 9. ValkkaFS

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

blockfile is simple binary file that encapsulates a table with N (number of blocks) rows and two columns. Each
column represents a millisecond timestamp:

mstime1 mstime2
... ...

where mstime1 indicates the first key-frame available in a block, while mstime2 indicates the last frame available
in that block.

valkkafs.json saves data about the current written block, number of blocks and the block size.

For efficient recording and playback with ValkkaFS (or with any VMS system), consider this:

• For efficient seeking, set your camera to emit one key-frame per second (or even two)

• Be aware of the bitrate of your camera and adjust the blocksize in ValkkaFS to that: ideally you’d want 1-2 key
frames per block

Consult the tutorial for more details.

9.3 Multiple Streams per File

You can also dump multiple streams into a single ValkkaFS. The variant for this is valkka.fs.
ValkkaMultiFS.

This requires that all cameras have the same bitrate and key-frame interval!

The advantage of this approach is, that all frames from all your cameras are streamed continuously into the same
(large) file or a dedicated block device, minimizing the wear and tear on your device if you are using a hdd.

The architecture is identical to ValkkaSingleFS, with a very small modification to the blockfile format:
mstime1 presents now the last key-frame among all keyframes of all the streams.

WARNING: writing multiple streams to the same file / block device is at very experimental stage and not well tested

9.4 Using an entire partition

WARNING: this makes sense only if you are using ValkkaMultiFS, i.e. streaming several cameras into a same ValkkaFS

An entire hard-drive/partition can be dedicated to ValkkaFS. In the following example, we assume that your external
hard-disk appears under /dev/sdb

To grant access to a linux user to read and write block devices directly, use the following command:

sudo usermod -a -G disk username

After that you still need to logout and login again.

Now you can verify that block devices can be read and written as regular files. Try this command:

head -n 10 /dev/sdb

to read the first ten bytes of that external hard-drive.

ValkkaFS uses devices with GPT partition tables, having Linux swap partitions, located on block devices.

Why such a scheme? We’ll be writing over that partition, so we just wan’t to be sure it’s not a normal user filesystem.
:)

9.3. Multiple Streams per File 77

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

The next thing we need, is to create a Linux swap partition on that external (or internal) hard disk. The recommended
tool for this is gparted.

Start gparted with:

sudo gparted /dev/sdb

Once in gparted, choose device => create partition table. Choose gpt partition table and press apply. Next choose
partition, and there, choose linux swap.

Let’s see how it worked out, so type

sudo fdisk -l

You should get something like this:

Device Start End Sectors Size Type
/dev/sdb1 2048 976773134 976771087 465,8G Linux swap

To get the exact size in bytes, type:

blockdev --getsize64 /dev/sdb1

So, in this case we’d be dedicating an external USB drive of 465 GB for recording streaming video.

To identify disks, Valkka uses uuid partition identification. The uuid can be found with

blkid /dev/sdb1

Suppose you get:

/dev/sdb1: UUID="db572185-2ac1-4ef5-b8af-c2763e639a67" TYPE="swap" PARTUUID="37c591e3-
→˓b33b-4548-a1eb-81add9da8a58"

Then “37c591e3-b33b-4548-a1eb-81add9da8a58” is what you are looking for.

In this example case, you would instantiate the ValkkaFS like this:

valkkafs = ValkkaMultiFS.newFromDirectory(
dirname="/home/sampsa/tmp/testvalkkafs",
partition_uuid="37c591e3-b33b-4548-a1eb-81add9da8a58",
blocksize=YOUR_BLOCKSIZE,
device_size=1024*1024*1024*465) # 465 GB

78 Chapter 9. ValkkaFS

CHAPTER 10

Cloud Streaming

Here we describe how to stream live, low latency video from your IP cameras to cloud and how to visualize the live
video in a web browser.

A good video container format for this is “fragmented MP4” (frag-MP4 aka FMP4). This is basically the same format
you have in those .mp4 files of yours, but it is fragmented into smaller chunks (aka “boxes”), so that it can be sent,
chunk-by-chunk, for low-latency live video streaming over your LAN or WAN.

LibValkka is able produce the fragmented MP4 “boxes” for you, while you can read them one-by-one, in your python
code. How to do this, please refer to the tutorial.

After obtaining the MP4 boxes, just use your imagination. You can send them over the internet using websockets,
gRRP, or any protocol of your choice. You can also dump them into an .mp4 file, and that file is understood by all
media clients (just remember to cache and write the ftyp and moov packets in the beginning of the file). For creating
a pipelines like that, please take a look here.

To play live video in your browser, use Media Source Extensions (MSEs). Receive the MP4 boxes through a websocket
and push them into the MSE API to achieve low-latency live video.

This is a true cross-platform solution, that works in Linux, Windows and desktop Mac iOS.

As of September 2020, iPhone iOS is still lacking the MSEs, so that is the only device where this approach doesn’t
work. In that case, you should use dynamically generated HLS playlists, while in this approach it is again convenient
to use frag-MP4.

For more information about the frag-MP4 structure, see this stack overflow post and this github repository.

MP4 is described extensively in this document.

Remember that not all codec + container format combinations are supported by the major browser. Most typical
combination for video is H264 + MP4. For a list of supported codec + container formats, please see this link. Note
that H265 support is still lacking behind.

For some more references on the subject, see in here and here.

79

https://grpc.io/
https://github.com/elsampsa/valkka-examples/tree/master/example_projects/basic
https://www.w3.org/TR/media-source/
https://developer.apple.com/documentation/http_live_streaming/example_playlists_for_http_live_streaming
https://stackoverflow.com/questions/54186634/sending-periodic-metadata-in-fragmented-live-mp4-stream
https://github.com/elsampsa/websocket-mse-demo
https://www.iso.org/standard/68960.html
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Video_codecs#codec_details
https://developer.mozilla.org/en-US/docs/Web/API/MediaSource#examples
https://developer.mozilla.org/en-US/docs/Web/API/Media_Source_Extensions_API

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

80 Chapter 10. Cloud Streaming

CHAPTER 11

OnVif & Discovery

(Your short primer to SOAP and OnVif)

11.1 Intro

OnVif is a remote-control protocol for manipulating IP cameras, developed by Axis.

You can use it to PTZ (pan-tilt-zoom) the camera, for setting camera’s credentials and resolution, and for almost
anything else you can imagine.

OnVif is based on SOAP, i.e. on sending rather complex XML messages between your client computer and the IP
camera. The messages (remote protocol calls), the responses and the parameters, are defined by WSDL files, which
(when visualized nicely) look like this.

11.2 Python OnVif

In Python, the main bottleneck was in finding a decent open source SOAP library that would do the trick. Recently,
things have got better with the arrival of Zeep.

Before Zeep existed, people used Suds, which has become a bit obsolete by now. A library called python-onvif was
based on Suds.

That python-onvif module has since then been forked and modded to work with Zeep.

However, we don’t need any of that, since it’s a better idea to

use Zeep directly

with minimum extra code bloat on top of it.

So, use Zeep as your SOAP client, give it the WSDL file and that’s about it.

81

http://www.axis.com
https://en.wikipedia.org/wiki/SOAP
http://www.onvif.org/ver20/ptz/wsdl
https://github.com/mvantellingen/python-zeep
https://github.com/suds-community/suds
https://github.com/quatanium/python-onvif
https://github.com/FalkTannhaeuser/python-onvif-zeep

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

11.3 OnVif with Zeep

Rather than giving you an obscure OnVif client implementation, you’ll learn to do this by yourself using Zeep. Let’s
begin with:

pip3 install zeep

You also need this table to get started:

WSDL Declaration Camera http sub ad-
dress

Wsdl file Subclass

http://www.onvif.org/ver10/device/wsdl device_service de-
vicemgmt.wsdl

DeviceManage-
ment

http://www.onvif.org/ver10/device/wsdl Media media.wsdl Media
http://www.onvif.org/ver10/events/wsdl Events events.wsdl Events
http://www.onvif.org/ver20/ptz/wsdl PTZ ptz.wsdl PTZ
http://www.onvif.org/ver20/imaging/
wsdl

Imaging imaging.wsdl Imaging

http://www.onvif.org/ver10/deviceIO/
wsdl

DeviceIO deviceio.wsdl DeviceIO

http://www.onvif.org/ver20/analytics/
wsdl

Analytics analytics.wsdl Analytics

Here is an example on how to create your own class for an OnVif device service, based on the class OnVif:

from valkka.onvif import OnVif, getWSDLPath

(1) create your own class:

class DeviceManagement(OnVif):
namespace = "http://www.onvif.org/ver10/device/wsdl"
wsdl_file = getWSDLPath("devicemgmt.wsdl")
sub_xaddr = "device_service"
port = "DeviceBinding"

(2) instantiate your class:

device_service = DeviceManagement(
ip = "192.168.0.24",
port = 80,
user = "admin",
password = "12345"
)

(the implementation of the base class OnVif is only a few lines long)

The things you need for (1) subclassing an OnVif service are:

• The remote control protocol is declared / visualized in the link at the first column. Go to http://www.
onvif.org/ver10/device/wsdl to see the detailed specifications.

• In that specification, we see that the WSDL “port” is DeviceBinding.

• Each SOAP remote control protocol comes with a certain namespace. This is the same as that address in the
first column, so we set namespace to http://www.onvif.org/ver10/device/wsdl.

82 Chapter 11. OnVif & Discovery

http://www.onvif.org/ver10/device/wsdl
http://www.onvif.org/ver10/device/wsdl
http://www.onvif.org/ver10/events/wsdl
http://www.onvif.org/ver20/ptz/wsdl
http://www.onvif.org/ver20/imaging/wsdl
http://www.onvif.org/ver20/imaging/wsdl
http://www.onvif.org/ver10/deviceIO/wsdl
http://www.onvif.org/ver10/deviceIO/wsdl
http://www.onvif.org/ver20/analytics/wsdl
http://www.onvif.org/ver20/analytics/wsdl

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

• We use a local modified version of the wsdl file. This can be found in the third column, i.e. set wsdl_file to
devicemgmt.wsdl (these files come included in libValkka).

• Camera’s local http subaddress sub_xaddr is device_service (the second column of the table)

When you (2) instantiate the class into the device_service object, you just give the camera’s local IP address and
credentials

11.4 Service classes

You can create your own OnVif subclass as described above.

However, we have done some of the work for you. Take a look at the column “Subclass” in the table, and you’ll find
them:

from valkka.onvif import Media

media_service = Media(
ip = "192.168.0.24",
port = 80,
user = "admin",
password = "12345"
)

11.5 Example call

Let’s try a remote protocol call.

If you look at that specification in http://www.onvif.org/ver10/device/wsdl, there is a remote protocol
call name GetCapabilities. Let’s call it:

cap = device_service.ws_client.GetCapabilities()
print(cap)

We can also pass a variable to that GetCapabilities call.

Variables are nested objects, that must be constructed separately. Like this:

factory = device_service.zeep_client.type_factory("http://www.onvif.org/ver10/schema")
category = factory.CapabilityCategory("Device")
cap = device_service.ws_client.GetCapabilities(category)
print(cap)

The namespace http://www.onvif.org/ver10/schema declares all basic variables used by the wsdl files.
We also provide a short-cut command for that:

category = device_service.getVariable("Device")

That’s about it. Now you are able to remote control your camera.

One extra bonus: to open the specifications directly with Firefox, try this

device_service.openSpecs()

11.4. Service classes 83

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

11.6 Notes

When specifying durations with Zeep, you must use the isodate module, like this:

import isodate
timeout = isodate.Duration(seconds = 2)

Now that variable timeout can be used with OnVif calls

11.7 Discovery

In libValkka, cameras can be discovered like this:

from valkka.discovery import runWSDiscovery, runARPScan
ips = runWSDiscovery()
ips2 = runARPScan(exclude_list = ips) # run this if you want to use arp-scan

If you want arp-scan to work, you must permit normal users to run the executable, with:

sudo apt-get install arp-scan
sudo chmod u+s /usr/sbin/arp-scan

84 Chapter 11. OnVif & Discovery

CHAPTER 12

Common problems

12.1 Pitfalls

Valkka has been designed for massive video streaming. If your linux box, running a Valkka-based program, starts to
choke up and you get frame jittering, stuttering / video freezes, and typically, this:

OpenGLThread: handleFifo: DISCARDING late frame ...

You should consider the following issues:

0. Are you using correct Valkka version?

Use the latest version. When running the PyQt testsuite, remember to run quicktest.py to see if your installation is
consistent.

1. Are you using sub-standard cameras?

Nowadays the image quality is impressive in all stock IP cameras, however, the rtsp server and/or timestamping of the
cameras can be buggy (there might be problems when maintaining several connections to the same camera, or when
re-connecting several times to the same camera).

Before blaming us, generate the same situation with a reference program, say with ffplay, and see if it works or not.
The PyQt testsuite offers nice tools for benchmarking agains ffplay and vlc.

2. Is your PC powerful enough to decode simultaneously 4+ full-hd videos?

Test against a reference program (ffplay). Launch KSysGuard to monitor your processor usage. Read also this.

3. Have you told Valkka to reserve enough bitmap frames on the GPU? Is your buffering time too large?

The issue of pre-reserved frames and buffering time has been discussed here and in the PyQt testsuite section.

4. Disable OpenGL rendering synchronization to vertical refresh (“vsync”).

On MESA based X.org drivers (intel, nouveau, etc.), this can be achieved from command line with “export
vblank_mode=0”. With nvidia proprietary drivers, use the nvidia-settings program.

Test if vsync is disabled with the “glxgears” command. It should report 1000+ frames per second with vsync disabled.

85

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

5. Disable OpenGL composition.

In a KDE based system, go to System Settings => Display and Monitor => Compositor and uncheck “Enable com-
positor on startup”. After that, you still have to restart your X-server (i.e. do logout and login). CTRL-ALT-F12 might
also work. In Xcfe based desktop, do Settings Manager -> Window Manager Tweaks -> Compositor -> uncheck
Enable Display Compositor.

Alternatively, you can user this command:

dbus org.kde.KWin /Compositor suspend

6. Is your IP camera’s time set correctly?

Valkka tries hard to correct the timestamps of arriving frames, but if the timestamps are “almost” right (i.e. off by a
second or so), there is no way to know if the frames are stamped incorrectly or if they really arrive late..!

So, either set your IP camera’s clock really off (say, 5+ mins off) or exactly to the correct time. In the latter case, you
might want to sync both your IP camera and PC to the same NTP server.

7. Are you really using a gigabit nic?

How’s your network interface hardware? Using an old usb dongle? Check your nic’s capacity with this command:

cat /sys/class/net/<device_name>/speed

It should say at least “100”, preferably “1000”

12.2 Bottlenecks

Once you ramp up the number of streams, you might start to experience some real performance issues. Some typical
problems include:

8. Your LAN and/or the LiveThread process sending frames in bursts

• Frames arrive late, and all in once. You should increase the buffering time OpenGLThread. See here.

• This is very common problem when streaming over Wifi

• If you observe broken frames, most likely your network interface is not keeping up. What is the bandwith of
your network and nic ? (as we just discussed. See also “System tuning” below)

9. The AVThread(s) performing the decoding and uploading to GPU are taking too long

• This is to be expected if all your CPU(s) are screaming 100%, so check that.

10. OpenGLThread is stalling

If you have tried everything suggested on this page so far, but you’re still getting

OpenGLThread: handleFifo: DISCARDING late frame ...

Then the problem is in the last part of the pipeline: the OpenGLThread.

It performs image interpolation and various other OpenGL calls, that, depending on your driver’s OpenGL implemen-
tation, might be efficient or not. Generally, NVidia seems to perform better that Intel.

If you compile libValkka from source, there are many available debug options that can be enabled in run_cmake.bash.
A particularly useful ones are profile_timing and opengl_timing. Enabling these debug switch allows you to trace the
culprit for frame dropping to slow network, slow decoding or the OpenGL part.

Some common fixes (that are frequently used in commercial video surveillance applications) include:

86 Chapter 12. Common problems

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

• Configure your cameras to a lower frame rate (say, 10 fps): unfortunately this sucks.

• Tell AVThread to decode only keyframes: choppy video.

• The mainstream/substream scheme:

– If you have, say, 20 small-sized video streams in your grid, it is an exaggeration to decode full-HD video
for each one of the streams.

– For small windows, you should switch to using a substream provided by your IP camera. A resolution of,
say, half of HD-ready might be enough.

– Decode and present the full-HD mainstream only when there are video windows that are large enough

Valkka provides (or will provide) API methods and FrameFilter(s) to implement each one of these strategies.

11. Packet drop

Maybe might have saturated your NIC (see also above (7))? Check in your camera’s web-interface/config the bandwith
it is using. Typical values are (which you can adjust): 2048 kbps (~2 mbps), 4096kbps (~4 mbps), etc. so do the math.

You can try to use TCP streaming instead of the default UDP streaming - see FAQ (a) below (valkka-live tip: you can
choose TCP streaming in the camera configuration)

12.3 System tuning

Adding the following lines into /etc/syscntl.conf

vm.swappiness = 1
net.core.wmem_max=2097152
net.core.rmem_max=2097152

And running

sudo sysctl -p

Turns off swap and sets maximum allowed read/write socket sizes to 2 MB.

Receiving socket size can be adjusted for each live connection with the associated LiveConnectionContext (see the
tutorial).

12.4 FAQ

(a) How can I stream over internet, instead of just LAN?

By default, stream is transported through UDP sockets. When streaming over internet, most of the ports are closed
due to firewalls, etc., so you have to stream through the same TCP port that is used for the RTSP negotiation (typically
port 554).

Modify your LiveConnectionContext like this:

ctx =LiveConnectionContext(LiveConnectionType_rtsp, "rtsp://admin:nordic12345@192.168.
→˓1.41", 1, live_out_filter)
ctx.request_tcp = True

(for more information, see here)

(b) Could not load the Qt platform plugin “xcb”

12.3. System tuning 87

https://elsampsa.github.io/valkka-core/html/structLiveConnectionContext.html

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

If you get this error:

qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it was
→˓found.

Then you are not running valkka-live directly in a desktop, but from remote etc. connection (or in docker, etc. “head-
less” environment).

It has really nothing to do with libValkka or valkka-live. In fact, none of your Qt and KDE-based desktop programs
would work at all. Check with this command:

echo $XDG_SESSION_TYPE

and make sure that it reports the value x11.

If the error persists, you’re desktop environment might have missing or broken Qt/KDE dependencies. Install the
whole KDE and Qt stack with:

sudo apt-get install kate

(this pulls a minimal KDE + Qt installation as dependencies of the Kate editor)

If this error still persists and is reported by python’s cv2 module, you have a broken cv2 version, so uninstall cv2 with:

pip3 uninstall opencv-python
sudo pip3 uninstall opencv-python # just in case!

And install your linux distro’s default opencv instead with:

sudo apt-get install python3-opencv

88 Chapter 12. Common problems

CHAPTER 13

Debugging

segfaults, memleaks, etc.

LibValkka is rigorously “valgrinded” to remove any memory leaks at the cpp level. However, combining cpp and
python (with swig) and throwing into the mix multithreading, multiprocessing and sharing memory between processes,
can (and will) give surprises.

1. Check that you are not pulling frames from the same shared-memory channel using more than one client

2. Run Python + libValkka using gdb

First, install python3 debugging symbols:

sudo apt-get install gdb python3-dbg

Then, create a custom build of libValkka with debug symbols enabled.

Finally, run your application’s entry point with:

gdb --args python3 python_program.py
run

See backtrace with

bt

If the trace point into Objects/obmalloc.c, then the cpp extensions have messed up python object reference
counting. See also here

3. Clear semaphores and shared memory every now and then by removing these files

/dev/shm/*valkka*

4. Follow python process memory consumption

Use the setproctitle python module to name your python multiprocesses. This way you can find them easily using
standard linux monitoring tools, such as htop and smem.

89

https://stackoverflow.com/questions/26330621/python-segfaults-in-pyobject-malloc
https://github.com/dvarrazzo/py-setproctitle

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Setting the name of the process should, of course, happen after the multiprocessing fork.

Install smem and htop:

sudo apt-get install smem htop

After that, run for example the script memwatch.bash in the aux/ directory. Or just launch htop. In htop, remember to
go to setup => display options and enable “Hide userland process threads” to make the output more readable.

Valkka-live, for example, names all multiprocesses adequately, so you can easily see if a process is leaking memory.

5. Prefer PyQt5 over PySide2

You have the option of using PyQt5 instead of PySide2. The former is significantly more stable and handles the tricky
cpp Qt vs. Python reference counting correctly. Especially if you get that thing mention in (2), consider switching to
PyQt5.

90 Chapter 13. Debugging

91

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

CHAPTER 14

Repository Index

Repository License About Namespaces
valkka-core LGPL

Core cpp code, api level 1
& 2 python code

valkka.core
valkka.api2
valkka.discovery
valkka.fs
valkka.multiprocess
valkka.onvif

valkka-examples MIT

Python tests & demo
programs. Qt demo
programs. See here

valkka-multiprocess MIT

valkka.multiprocess is
“mirrored” here from
valkka.core, if you’re just
interested in
the multiprocessing code

valkka.multiprocess

valkka-live AGPL

A demo video
surveillance program
using
libValkka

valkka.live
valkka.mvision

valkka-cpp-examples MIT

Create your own Valkka
cpp extension module

valkka-skeleton MIT

A skeleton for making
valkka python modules

darknet-python MIT

Python3 bindings for
Darknet / YOLO
(pretty obsolete)

darknet.core
darknet.api2
darknet.turk

92 Chapter 14. Repository Index

https://github.com/elsampsa/valkka-core
https://github.com/elsampsa/valkka-examples
https://github.com/elsampsa/valkka-multiprocess
https://github.com/elsampsa/valkka-live
https://github.com/elsampsa/valkka-cpp-examples
https://github.com/elsampsa/valkka-skeleton
https://github.com/elsampsa/darknet-python

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

If you need an LGPL license for valkka-live, please contact us.

93

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

94 Chapter 14. Repository Index

CHAPTER 15

Licence & Copyright

(C) Copyright 2017 - 2020 Sampsa Riikonen and Valkka Security Ltd.

The core component libValkka is licensed under the LGPL license

95

https://www.gnu.org/licenses/lgpl-3.0.html

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

96 Chapter 15. Licence & Copyright

CHAPTER 16

Authors

Sampsa Riikonen (sampsa.riikonen _at_ iki.fi)

97

http://www.iki.fi/sampsa.riikonen

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

98 Chapter 16. Authors

CHAPTER 17

Knowledge Base

Tips, instructions, etc. for compiling libValkka, Qt & Yolo on out-of-the-ordinary hardware

17.1 General

When compiling and generating yourself python binary packages these commands come handy:

pip3 wheel --wheel-dir=YOUR_DIRECTORY -r requirements.txt
pip3 install --no-index --find-links=YOUR_DIRECTORY -r requirements.txt

The first one downloads binary whl packages, defined in requirements.txt, from pypi.org to directory
YOUR_DIRECTORY.

Next, put your manually compiled packages into YOUR_DIRECTORY

After that, launch the second command: it installs packages, defined in requirements.txt from YOUR_DIRECTORY.

References:

• https://pip.readthedocs.io/en/stable/user_guide/#installing-from-wheels

17.2 OpenCV & OpenCV contrib

Normally you might install OpenCV & its python bindings just with

pip3 install --user --upgrade opencv-python opencv-contrib-python

The “contrib” module includes the “non-free” part (with patented algorithms etc.) of OpenCV library. However, most
of the time this won’t work either, since the libraries have been compiled with non-free algorithms disabled.

There’s no other way here than to compile this by yourself. You need to install (at least):

99

https://pip.readthedocs.io/en/stable/user_guide/#installing-from-wheels

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-
→˓dev libavformat-dev libswscale-dev libv4l-dev python-dev python-numpy libtbb2
→˓libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
→˓libxvidcore-dev libx264-dev

Check out opencv & opencv-contrib from github. Add build directory and therein a file named run_cmake.bash. Your
directory structure should look like this:

opencv/
build/

run_cmake.bash
opencv-contrib/

run_cmake.bash looks like this:

#!/bin/bash
cmake -D WITH_CUDA=OFF \

-D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \
-D OPENCV_ENABLE_NONFREE=ON \
-D WITH_GSTREAMER=ON \
-D WITH_LIBV4L=ON \
-D BUILD_opencv_python2=OFF \
-D BUILD_opencv_python3=ON \
-D CPACK_BINARY_DEB=ON \
-D BUILD_TESTS=OFF \
-D BUILD_PERF_TESTS=OFF \
-D BUILD_EXAMPLES=OFF \
-D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
..

While at build directory, do

./run_cmake.bash
make -j 4

There’s a bug in the opencv build system, so we have to employ a trick before building the debian packages: comment
out this line

set(CPACK_DEBIAN_PACKAGE_SHLIBDEPS "TRUE")

from “CPackConfig.cmake”. After that you should be able to run

make package

Before installing all deb packages from the directory with

sudo dpkg -i *.deb

remember to remove any pip-installed opencv and opencv contrib modules

100 Chapter 17. Knowledge Base

https://github.com/opencv/opencv
https://github.com/opencv/opencv_contrib
https://stackoverflow.com/questions/45582565/opencv-cmake-error-no-such-file-or-directory-on-ubuntu

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

17.3 Jetson Nano

17.3.1 Qt Python Bindings

There are two flavors of Qt Python bindings, namely, PyQt and PySide2. Here we deal with the latter. If you have
information on PyQt on JetsonNano, please do send us an email.

PySide2 Qt python bindings are not available for all architectures simply from pypi using pip3 install command.
This is the case for Jetson Nano. So we have to compile ourselves.

Install clang, build tools, Qt module clang header files, etc:

sudo apt-get install git build-essential cmake libclang-dev qt5-default qtscript5-dev
→˓libssl-dev qttools5-dev qttools5-dev-tools qtmultimedia5-dev libqt5svg5-dev
→˓libqt5webkit5-dev libsdl2-dev libasound2 libxmu-dev libxi-dev freeglut3-dev
→˓libasound2-dev libjack-jackd2-dev libxrandr-dev libqt5xmlpatterns5-dev
→˓libqt5xmlpatterns5 libqt5xmlpatterns5-dev qtdeclarative5-private-dev qtbase5-
→˓private-dev qttools5-private-dev qtwebengine5-private-dev

Git clone PySide2 python bindings source code:

git clone git://code.qt.io/pyside/pyside-setup.git
cd pyside_setup

PySide2 python bindings must be compatible with your system’s Qt version. Find out the version with:

qmake --version

For ubuntu 18 LTS for example, the version is 5.9.5, so:

git checkout 5.9

Next, edit this file:

sources/pyside2/PySide2/QtGui/CMakeLists.txt

Comment out (using #), these two lines:

${QtGui_GEN_DIR}/qopengltimemonitor_wrapper.cpp
${QtGui_GEN_DIR}/qopengltimerquery_wrapper.cpp

Finally, compile the bindings with:

python3 setup.py build

That might take up to 8 hrs, so see a movie using your favorite streaming service. :)

That compiles python bindings for all Qt features, so it could be a good idea to comment out more wrappers in that
CMakeLists.txt

After that, you can create a distributable package by:

python3 setup.py --only-package bdist_wheel

The package appears in directory dist/ and is installable with pip3 install --user packagename.whl

References:

• https://github.com/PySide/pyside2/wiki/Dependencies

17.3. Jetson Nano 101

https://github.com/PySide/pyside2/wiki/Dependencies

valkka𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

• https://wiki.qt.io/Qt_for_Python

• Pyside’s setup.py : read the comments within the first lines

• https://bugreports.qt.io/browse/PYSIDE-568

• search

102 Chapter 17. Knowledge Base

https://wiki.qt.io/Qt_for_Python
https://bugreports.qt.io/browse/PYSIDE-568

	About Valkka
	Why this library?
	Valkka API
	The Project

	Supported hardware
	IP Cameras
	USB Cameras
	Codecs
	Linux clients
	Hardware Acceleration

	Installing
	A. Install using PPA
	B. Install using releases
	C. Compile yourself
	Test your installation
	Numpy
	Install the testsuite
	GTK
	OpenCV
	Development version

	The PyQt testsuite
	test_studio_1.py
	test_studio_detector.py

	Tutorial
	Using the tutorial
	Prerequisites
	Lessons

	Decoding
	Single thread
	Multithread
	GPU Accelerated
	Queueing frames

	Integrating with Qt and multiprocessing
	Qt integration
	Drawing video into a widget
	Python multiprocessing
	C++ API

	Multi-GPU systems
	Introduction
	Our approach
	Configuration
	Note on $DISPLAY

	ValkkaFS
	VMS Architecture
	Filesystem
	Multiple Streams per File
	Using an entire partition

	Cloud Streaming
	OnVif & Discovery
	Intro
	Python OnVif
	OnVif with Zeep
	Service classes
	Example call
	Notes
	Discovery

	Common problems
	Pitfalls
	Bottlenecks
	System tuning
	FAQ

	Debugging
	Repository Index
	Licence & Copyright
	Authors
	Knowledge Base
	General
	OpenCV & OpenCV contrib
	Jetson Nano

